
On Main-memory Multicore Transaction 
Performance Yihe Huang, Harvard University

Conclusion

Index Contention in TPC-C
• We found an instance of index contention in TPC-C 

that caused the OCC performance collapse in many 
prior measurements.

• The example above shows a common multi-part key 
used by TPC-C new-order table, where keys with 
different district IDs appear consecutive in the key 
space.

• This can lead to false-sharing of B-tree leaf nodes in 
these indexes, causing frequent phantom protection 
aborts, starving Delivery transactions!

wid=1 did=1 oid=999 wid=1 did=2 oid=1

Key space

Delivery transaction throughput in 
TPC-C full mix, high contention

Impact of Non-CC Factors
High-contention TPC-C results

with individual factor optimizations switched off

• Many factors beyond concurrency control algorithms 
shape perceived performance of a transactional 
system.

• With good non-CC factor choices, OCC’s performance 
does not collapse in a high contention TPC-C 
workload.

• Takeaway: One must be careful when drawing 
meaningful conclusions from cross-system 
comparisons or when implementing an alternative 
system from scratch based on its text description.

Non-CC factors have surprisingly large impact on transaction performance.

Background and Motivation
• Conventional wisdom suggests that OCC suffers from 

performance collapse under high contention.
• The collapse is viewed as a fundamental issue with 

OCC, and only alternative CC protocols can solve this 
issue.

• But these results aren’t always reproducible.

OCC (Silo)

High-contention TPC-C results in prior work [1]

MVCC

Same high-contention TPC-C measured on our system

What 
gives?

[1] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen, Cicada: Dependably fast multi-core in-Memory transactions, SIGMOD’17


	Slide Number 1

