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1 Introduction
Main-memory database systems achieve high throughput
by keeping their data structures entirely in memory, and by
taking advantage of parallel execution on multicore hard-
ware. This requires concurrency control (CC), which ensures
serializability (or other isolation properties) for concurrently
executed transactions. The performance of CC mechanisms
has been an active area of systems research. Many different
CC mechanisms claim to improve performance over base-
lines such as optimistic concurrency control (OCC).

However, main-memory transactions can run so fast that
small differences in system design and implementation, of-
ten unrelated to CC mechanism, can have magnified impact
on performance. For instance, many CC schemes have been
motivated by apparent collapse under high contention of
the performance of single-version OCC; but when using our
own optimistic OCC-based system, we do not observe this
collapse. Why is this? And are the observed benefits of new
CC designs, such as multi-version and mixed optimistic/pes-
simistic CC variants, due more to CC mechanisms, or more
to implementation differences?

In this work, we identify non-CC implementation factors
that can have nontrivial impact on transaction performance,
and conduct a set of carefully controlled experiments to find
their degree of impact. We find that for a high contention
OLTP workload, the collapse of other OCC implementations’
performance is caused by non-CC factors such as index con-
tention, index type, and contention regulation. In particu-
lar, the index contention we found is present in many sys-
tems and has severe adverse performance implications, but
is largely overlooked by recent work.

2 Background and Related Work
Concurrency control (CC) is an old topic in database research,
and it has seen renewed interest recently due to high transac-
tion throughput achieved by modern main memory database
systems. As with many other database properties, there is
no single “best” CC algorithm, and the choice of a best CC
can depend on the workload.
One popular and well-studied CC is optimistic concur-

rency control (OCC) [5]. It is used in many modern main
memory database systems [2, 4, 12] due to its simplicity.
It is also well understood that OCC performs well when

transactions are expected to rarely conflict, due to OCC elid-
ing writes to shared memory for transactional reads. OCC’s
limitations are clearest in workloads with high contention,
where repeated conflicts and rollbacks can cause starvation
or livelock.
Much modern CC research aims at addressing these lim-

itations. For example, mixed OCC/locking protocols such
as MOCC [13] and ACC [11] aspire to take advantage of
pessimistic CC’s progress guarantee at high contention and
OCC’s low overhead at low contention, thereby achieving the
best of both worlds. These adaptive algorithms use heuristics
to estimate the level of conflicts in the workload and dynam-
ically switch between pessimistic and optimistic modes of
operation. Multi-version concurrency control (MVCC) [10],
another popular technique, stores multiple copies of the
record to greatly reduce read–write conflicts between trans-
actions. Modern MVCC systems like Cicada [6] claim to
match the performance of their OCC counterparts while
keeping MVCC’s advantage in handling long-running read-
only queries. Novel OCC-based systems like TicToc [14]
apply MVCC-style timestamp ordering in a single-version
setting, thereby reducing the overhead of serializability vali-
dation without paying the overhead cost of multiple versions.
All of these systems claim to outperform existing OCC sys-
tems on realistically high-contention workloads, often by
significant margins.

3 Results
We conducted our experiments on STO [3], a software trans-
actional memory, using OCC and MVCC variants. The ex-
periments are run on Amazon EC2 m4.16xlarge dedicated in-
stances powered by two Intel Xeon E5-2686 v4 CPUs (16c/32t
each, 32c/64t per machine) with 256GB of RAM. We imple-
mented a simple main-memory database using ordered and
unordered index structures in STO, and implemented a TPC-
C benchmark on top of this main-memory database. We
expected to replicate results reported by Cicada [6], which
evaluates several CC schemes at different contention levels.
Cicada reports that OCC performance on high-contention
TPC-C declines by roughly 50% as the number of threads
rises from 1 to 28, and that OCC andMVCC perform similarly
on low-contention TPC-C.
Our results, shown in Figure 1, contradicted this expec-

tation. High-contention OCC performance rises by roughly
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Figure 1. TPC-C full mix for OCC and MVCC.
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Figure 2. Factor analysis in TPC-C full mix; MVCC STO, 1
warehouse, 24 threads. All results shown have the index con-
tention fix applied, without which the performance would
completely collapse.

50% from 1 to 28 threads, declining modestly thereafter; and
under low contention, OCC significantly outperformsMVCC
(as well as Cicada).

As we investigated further, we found that these results
were largely explained by differences in implementation fac-
tors other than core CC. These factors had dramatic impact
on the apparent performance of OCC, and differences in
the way these factors are implemented can all-too-easily be
mistaken for fundamental differences in performance of the
underlying CC mechanisms.

The most important factors we observed include:

Index contention: When an index uses a multi-part key
(such as a pair of country and region) where range operations
are common (such as scans over a country), it’s important
to design the index to reduce conflicts. In many implementa-
tions, a multi-part key is simply marshalled into one big key
in some order-preserving but otherwise opaque way. In such
index implementations range scans can easily conflict with
operations such as inserts on distinct ranges. These false
conflicts contribute significantly to performance collapse
when phantom protection is enabled. False conflicts can be
discouraged by mapping different key parts to distinct index
sub-structures. Our (ordered) indexes are implemented us-
ing Masstree [7], which supports this key partitioning very
easily.

Contention regulation refers to the reaction taken by
a thread after a transaction aborts. Over-eager transaction
retries can damage performance on multicore machines by
causing repeated cache invalidations. As with spinlock imple-
mentations and even network contention [1, 8], exponential
backoff after aborting provides good balance between fast
retries after rare contention events and low overhead during
high contention. Furthermore, OCC, which aborts frequently,
should implement aborts in an efficient way. Some systems,
such as Silo [12], used expensive programming language con-
structs for aborts—in fact, aborts induced lock contention on
an underlying language runtime object! Our baselines use
exponential backoff with efficient aborts.

Index types refers to a system’s choice of data structure
for indexes: it’s more efficient to use hash tables for indexes
that do not require range queries.
We also observed that for MVCC, memory allocation

is another important factor, because every update requires
creating a copy of the record. A good multicore memory
allocator should at minimum take advantage of superpages
and impose little contention of its own. We use a fast general-
purpose memory allocator, rpmalloc [9].
Figure 2 shows the degree of impact of non-CC factors

discussed above in a high contention TPC-C workload. We
show results for MVCC only but they are also representative
of OCC (except for the allocator).

4 Conclusion
In our work, we showed that the the potential for perfor-
mance collapse of OCC may have been exaggerated in prior
work. Non-CC implementation factors actually contributed
to this perceived collapse, and these factors can have just as
much or more impact on performance than CC. We listed
our implementation choices for reference.
Our results also show the importance of controlling for

non-CC factors when comparing different CC implementa-
tions. Care must be taken when drawing conclusions from
cross-system comparisons or comparisons with a system
re-implemented from its text description.
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