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Abstract. Optimistic concurrency control, or OCC, can achieve excellent performance on uncontended workloads
for main-memory transactional databases. Contention causes OCC’s performance to degrade, however, and recent
concurrency control designs, such as hybrid OCC/locking systems and variations on multiversion concurrency control
(MVCC), have claimed to outperform the best OCC systems. We evaluate several concurrency control designs under
varying contention and varying workloads, including TPC-C, and find that implementation choices unrelated to con-
currency control may explain much of OCC’s previously-reported degradation. When these implementation choices
are made sensibly, OCC performance does not collapse on high-contention TPC-C. We also present two optimization
techniques, commit-time updates and timestamp splitting, that can dramatically improve the high-contention perfor-
mance of both OCC and MVCC. Though these techniques are known, we apply them in a new context and highlight
their potency: when combined, they lead to performance gains of 3.4× for MVCC and 3.6× for OCC in a TPC-C
workload.

Description. The performance of multicore main-memory transactional systems is a subject of intense study [1, 3,
4, 6–11, 13]. Techniques based on optimistic concurrency control (OCC) perform extremely well on low-contention
workloads, thanks to their efficient use of shared memory bandwidth and avoidance of unnecessary memory writes. On
high-contention workloads, however, OCC can experience frequent aborts and, in the worst case, contention collapse,
where performance for a class of transactions crashes to nearly zero due to repeated conflicts.

Recent designs targeted at high-contention workloads, including partially-pessimistic concurrency control [10],
dynamic transaction reordering [13], and multiversion concurrency control (MVCC) [5, 6], change the transactional
concurrency control protocol to better support high-contention transactions. The evaluations of these designs show
dramatic benefits over OCC for high-contention workloads, including TPC-C, and some show benefits over OCC even
at low contention [6].
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Figure 1: OCC throughput under TPC-C full-mix showing impact of basis factors. Factor optimizations are individu-
ally turned off from the optimized baseline to demonstrate the capping effect of each factor.

Many of these evaluations compare different code bases, however, which could cause mere implementation dif-
ferences to unduly influence the results. We therefore analyzed several main-memory transactional systems, including
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Benchmark OSTO OSTO+CU OSTO+TS OSTO+CU+TS MSTO MSTO+CU MSTO+TS MSTO+CU+TS
TPC-C 276 286 (1.04×) 432 (1.57×) 1001 (3.63×) 431 269 (0.62×) 410 (0.95×) 1456 (3.38×)
YCSB 473 855 (1.81×) 466 (0.99×) 844 (1.78×) 326 1851 (5.68×) 687 (2.11×) 2487 (7.64×)
Wikipedia 170 487 (2.86×) 167 (0.98×) 483 (2.84×) 128 311 (2.43×) 128 (1.01×) 449 (3.52×)
RUBiS 1378 1924 (1.40×) 1368 (0.99×) 1957 (1.42×) 1475 1692 (1.15×) 1505 (1.02×) 1721 (1.17×)

Figure 2: Throughput of STOv2 with high-contention optimizations (CU and TS) in Ktxns/sec at 64 threads in high-
contention benchmarks, with improvements over respective baselines in parentheses.

Silo [9], DBx1000 [12], Cicada [6], ERMIA [5], and MOCC [10]. We found several underappreciated engineering
choices – we call them basis factors – that dramatically affect these systems’ high-contention performance. For in-
stance, some abort mechanisms exacerbate contention by obtaining a hidden lock in the language runtime. Figure 1
summarizes results when measured using a high-contention TPC-C benchmark under OCC.

To better isolate the effect of concurrency control (CC) on performance, we implement and evaluate three CC
mechanisms – OCC, TicToc [13], and MVCC – in a new system, STOv2, that makes good, consistent implementa-
tion choices for all basis factors. We show results up to 64 cores and for several benchmarks, including low- and
high-contention TPC-C, YCSB, and benchmarks based on Wikipedia and RUBiS. With basis factors controlled, OCC
performance does not collapse on these benchmarks, even at high contention, and OCC and TicToc significantly out-
perform MVCC at low and medium contention. This contrasts with prior evaluations, which reported OCC collapsing
at high contention [2] and MVCC performing well at all contention levels [6].

In addition, we introduce, implement, and evaluate two optimization techniques that can improve performance
on high-contention workloads for all concurrency control schemes we evaluated (OCC, TicToc, and MVCC). These
techniques safely eliminate classes of conflict that were common in our workloads. First, the commit-time update (CU)
technique eliminates conflicts that arise when read-modify-write operations, such as increments, are implemented us-
ing plain reads and writes. Second, many records have fields that rarely change; the timestamp splitting (TS) technique
avoids conflicts between transactions that read rarely-changing fields and transactions that write other fields. These
techniques have workload-specific parameters, but they are conceptually general, and we applied them without much
effort to every workload we investigated. Like MVCC and TicToc, the techniques improve performance on high-
contention workloads. However, unlike MVCC, these optimizations have little performance impact at low contention;
unlike TicToc and MVCC, they help on every benchmark we evaluate, not just TPC-C; and they benefit TicToc and
MVCC as well as OCC. Though the techniques are widely known, our variants are new, and we are the first to report
their application to TicToc and MVCC. Figure 2 summarizes the results with high-contention optimizations.

This work is based on a paper accepted to VLDB 2020.
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