
Real Semantics: Capturing Floating-Point Imprecision

Hannah Blumberg Yihe Huang Dan King Paola Mariselli
School of Engineering and Applied Sciences, Harvard University

hannahblumberg@college.harvard.edu yihehuang@g.harvard.edu
daniel.zidan.king@gmail.com paolamariselli@fas.harvard.edu

Abstract
Floating-point numbers and their respective arithmetic operations
are often used with the assumption of a certain level of precision.
However, there are times when exact precision is necessary. In these
cases, floating-point arithmetic is defective in that it is fundamen-
tally interval arithmetic wherein the interval lengths are a function
of the median point.

Therefore, we present Real Semantics, an automated tool that rea-
sons about the accuracy of floating-point arithmetic. Real Seman-
tics systematically discovers instances where the floating-point
arithmetic result is not the most accurate floating-point approxima-
tion to the real number implied by any given algorithm. Thereafter,
Real Semantics shows the user where the discrepancy is taking
place in the form of a line number and variable name.

Keywords Floating-point numbers. Floating-point arithmetic.
Precision errors.

1. Introduction
1.1 Motivation

It is impossible to represent infinitely many real numbers using
finitely many bits. As a result, most computer systems that aim to
work with real numbers use the floating-point system to represent
real numbers.

Despite the frequency with which floating-point numbers and their
associated operations are used, floating-point numbers have many
confusing properties that make it difficult to use them correctly. For
example, floating-point operations are not closed and are generally
not associative. That is, a binary operation that takes two floating-
point values may not result in a value that can be exactly repre-
sented in the floating-point system. Consequently, the value must
be rounded or truncated. Precision loss due to rounding or trunca-
tion causes operations to produce different results when applied to
the floating-point values in different orders [10]. In most applica-
tions, the precision loss due to sloppy programming is insignificant
and does not impose a threat to correctness. However, because of
the silent nature of these kind of errors, small errors in floating-
point numbers can accumulate and cause more severe problems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.
CS260r’15, Harvard University. May 15, 2015, Cambridge, Massachusetts, USA.
Copyright c© 2015 ... $999999999999.99.

One such severe problem occurring as a result of floating-point im-
precision is the Ariane 5 rocket explosion. The $500 million rocket
owned by the European Space Agency was destroyed in 1996 due
to a floating-point error. After the rocket launched, one of the sys-
tems produced a 64-bit floating-point number which was then sent
to the on-board system. When the on-board system converted it into
a 16-bit integer, an overflow error occurred and caused the main
system to shut down. Since this error was unexpected, no coding
policies had been implemented to safeguard against it [14]. This
resulted in the system interpreting the change as a course change.
This veered the rocket off course and caused a major disaster.

Floating-point imprecision can also cause other major problems
that cost businesses significant financial resources. Variances in
digits when calculating floating-point arithmetic can cause numbers
to be rounded the wrong direction. This in turn can cause numeric
issues, which lead to errors in financial calculations, particularly
when these small errors add up. Although most financial organi-
zations take heed on this issue and use other data representations
instead, every so often floating-point errors re-surface. For exam-
ple, with the introduction of the EURO, when old local currencies
were converted to the EURO or to other local currencies, conver-
sion, reconversion, and totalising errors occurred [14].

1.2 Contributions

Given that floating-point errors are so important to programmers
and the products they create, we built Real Semantics, a dynamic
floating-point imprecision detector based on the LLVM interpreter.
This tool captures significant floating-point imprecision and reports
it to the user. By doing this, we expose otherwise silent floating-
point precision errors that may eventually cause significant, yet
difficult-to-detect bugs.

Thus, our main contribution is a modified LLVM interpreter that:

• tracks higher-precision representations of the numbers calcu-
lated by the interpreted program,

• notifies the user of floating-point imprecision only when it sub-
stantially changes the behavior of the program, and

• identifies precision loss events by operation, variable name,
and/or location (file name and line number).

2. Related Work
2.1 Static Analysis

Barr et al. [7] built Ariadne. Ariadne applies symbolic execution to
statically detect floating-point related bugs. Ariadne statically dis-
covers occurrences of underflow, overflow, and arguments outside a
function’s domain, including division-by-zero. Ariadne converts C,
C++, and Fortran programs to a real number companion program
that makes explicit the possibility of floating-point errors. Ariadne
discovers real number constraints that trigger the explicit floating-

point errors using symbolic execution, an SMT solver, and a cus-
tom algorithm for solving non-linear constraints. Finally, Ariadne
converts the real number constraints to floating-point numbers that
witness the bugs.

Ariadne does not require test inputs nor does it actually execute the
program - these are two improvements over our contribution, Real
Semantics. However, Ariadne does not detect accumulated floating-
point imprecision that modifies program behavior relative to the
real number values while Real Semantics does. Moreover, Ariadne
requires sophisticated tools and techniques to create and solve real
number constraints.

2.2 Formal Verification

Boldo and Filliatre [8] present a formal approach using Coq to ver-
ify floating-point programs. In contrast to Real Semantics and Ari-
adne, Boldo, et al. attempt to prove the non-existence of floating-
point bugs. Moreover, they prove error bounds on the outputs of
floating-point valued functions. Their work does not support the
verification of programs using transcendental functions, such as
sine and cosine.

Very recently, Boldo et al. [9] extended the CompCert compiler
with a verified correct translation of IEEE-754 floating-point se-
mantics into hardware. This is an important step towards verified
correct floating-point computation because we can now trust that
correct floating-point implementations in C will be compiled to cor-
rect machine code.

A major component of the work of Boldo et al. [9] was a formally
specified semantics of IEEE-754 floating-point arithmetic. Inter-
estingly, there did not previously exist such a rigorous, machine
digestible definition of the IEEE standard.

Verification is an attractive alternative for critical systems, however,
current methods are impractical for large programs owing both to
the reasoning complexity and the necessary human effort.

2.3 Precise By Construction

Panchekha et al. [13] developed Herbie. Herbie is a tool for auto-
matically improving the accuracy of floating-point programs. The
user specifies a numeric expression in a simple s-expression lan-
guage. Herbie then performs rounds of testing random floating-
point values and applying a table of known mathematical identities.
Finally, Herbie outputs an expression that is equivalent on the reals,
but more precise on the floating-point numbers.

Of the programs generated by Herbie, after conversion to C and
compilation with GCC, the median program is 40% slower than
the unadultered programs. However, the generated programs are
impressively more accurate; often achieving nearly maximum ac-
curacy for the given floating-point format. Unfortunately, Herbie
is necessarily limited to purely mathematical expressions. It can-
not comprehend nor improve full programs in Turing-complete lan-
guages. Our tool, Real Semantics, complements Herbie by follow-
ing the propagation of floating-point imprecision through impera-
tive code.

3. Design
3.1 Floating-point Numbers

Although our implementation was a relatively complex set of
changes to the LLVM interpreter [2], our design is exceedingly
simple.

Floating-point numbers are represented as a significand (also
known as the mantissa), representing the significant digits, and
an exponent, representing the magnitude of the number. Each

floating-point number represents an uncountably infinite set of real
numbers. As such, the set of reals represented by a floating-point
number

f = d.ddd...dd× be

is defined as the real numbers falling in the ball centered at f with
radius:

0.000...00d′ × be

where d′ is the digit b/2, assuming an even base. If floating-
point numbers actually used interval arithmetic, then multiplication
and addition would lead to ever increasing intervals. In the worst
case, the interval could be large enough to make each digit in the
significand meaningless.

Our tool aims to use much higher precision numbers so that the
intervals stay much smaller than the regular precision numbers. We
can then report the discrepancies between these numbers.

3.2 Augmented Floating-point Semantics

Floating-point imprecision can occur after any floating-point op-
eration, depending on the magnitude and value of the arguments.
We consider two sets of floating-point operations. Those that are
floating-point valued and those that are not:

⊕ ::= / | − | + | ∗ | sqrt | abs | exp | cos
| sin | tan | atan | atan2 | · · ·

v ::= < | ≤ | > | ≥ | = | · · ·

Many of these operations have non-trivial relationships between
input error and output error. We side-step all these issues by simply
accompanying every floating-point number by a higher-precision
partner.

We perform a conceptually very simple program transformation.
We replace every literal floating-point number with a pair of that
literal represented in both floating-point precision as well as higher
precision. Since both values are numbers and the product operator
is a Functor, we can lift all numeric operations point-wise. We
denote the higher precision representation of a number x as x̂

x 7→ (x, x̂)

(x, x̂)⊕ (y, ŷ) 7→ (x⊕ y, x̂⊕ ŷ)

Floating-point numbers interact with the other types of the C pro-
gramming language at three specific points:

• conversion to integral-typed numbers,
• comparison operations, and
• output operations (such as printf).

We could simply make our interpreter an Abstract Interpretation
and use approximations for other types, such as sets of Booleans
and integral intervals. This approach, however, did not seem partic-
ularly useful nor practical.

Real Semantics inserts floating-point precision checks before these
sorts of operations. We do not halt the execution, as this would
prevent the discovery of further floating-point imprecision errors.
Instead, we report the precision loss to the user. Again, we use

(INTTY PE)f 7→ checkPrecisionAndReport(f); (INTTY PE)f

(x, x̂) v (y, ŷ) 7→ if ((x̂ v ŷ) != (x v y)) then report fi ; (x v y)

printf (fmt, (x, x̂)) 7→ if strcmp (sprintf (fmt, x), sprintf (fmt, x̂)) != 0

then report fi ; printf (fmt, (x, x̂))

Figure 1. The program transformation that inserts precision checks.

a very conceptually simple program transformation depicted in
Figure 1.

The checkPrecisionAndReport function converts the high pre-
cision representation to the nearest low-precision number and
checks for equality against the low-precision number. If the num-
bers are not equal then it reports the values, the variable name, the
line number, and the file name based on their availability.

4. Implementation
We present a modified version of the LLVM interpreter that catches
floating-point imprecision, which interprets program in LLVM in-
termediate representation (IR) [3]. We choose to work at the IR
level in order to increase the power and flexibility of our tool. IR
provides a version of the original source code that is both machine-
and language-independent. As a result, our tool can be used to
check any strongly-typed program that can be compiled to bitcode
format. Furthermore, the IR is much a simpler language than most
source code languages we wish to analyze, but does not lose any of
the information necessary for accurate analysis.

4.1 Real Number Computations

Initially, we considered using a C++ package called RealLib for our
real number computations [12]. However, we soon found that this
library was not exactly ready for use out-of-the-box. For example,
the following code snippet output “Infinity”.

RealLib::Real sum("0");

std::cout << std::setprecision(15) << sum <<
std::endl;

Since RealLib seemed unable to correctly represent zero and is
not well-supported or discussed online, we chose to use the GNU
MPFR library instead. MPFR is a well-supported C library that
can be used for multiple-precision floating-point computations with
correct rounding [5].

MPFR correctly handles the situation mentioned above. The only
shortcoming is that MPFR requires that we know a priori how much
precision we will need to compute a particular answer. In general,
the intermediate precision necessary to correctly compute an an-
swer can be arbitrarily higher than the precision necessary to store
the final result. For example, consider alternating between adding
0.1 and 10000000 ten million times. The final result, will use only
a couple bits, as it is a multiple of ten, however, the intermediate
values need to correctly store 10000000.1 which requires a greater
number of bits.

Nevertheless, for our purposes, MPFR was a better solution for real
number computations than RealLib.

4.2 SmartFloat

Our tool is able to identify floating-point imprecision by attach-
ing extra information to every float or double that is used in
the source code. In particular, when a value of type float or
double is created, we replace it with a SmartFloat. Each
SmartFloat contains the original float or double value
along with a “real” representation of the value. The real repre-
sentation uses MPFR to achieve 4,096 bits of precision.

The SmartFloat is then stored in a global map. Whenever a
float or double is loaded from memory, the map is traversed
to find the appropriate SmartFloat.

At a high level, operations that are performed on the original
float or double value are now performed twice: once on the
float or double value with typical floating-point semantics and
once on the “real” representation of the value with higher precision.
This is described in detail in section 4.4.

4.3 Types in LLVM IR

The LLVM IR has a type system that is very similar to C and C++’s.
Because of the useful type information at the IR level, the inter-
preter understands the type of the data being operated on. For ex-
ample, when passing arguments to a function, the interpreter usu-
ally knows the exact type of each argument, unless it is explic-
itly casted to untyped bytes (or a pointer to untyped bytes) in the
higher level language. Our modified interpreter provides additional
semantics for data of float or double type by maintaining in-
ternal SmartFloat objects. LLVM IR program constructs that
operate on data of floating-point types will hence operate on these
SmartFloat objects instead.

Note that the newly introduced SmartFloat type is not an exten-
sion to the LLVM IR. We are only introducing SmartFloat ob-
jects when interpreting programs in LLVM IR.

4.4 Supported Program Constructs

Since our tool operates at the LLVM IR level, we extend the imple-
mentations of certain LLVM IR constructs in the LLVM interpreter
to provide additional semantics. We will describe the changes made
into these constructs here in detail.

4.4.1 Floating-Point Binary Operations

Floating-point binary operation instructions, or BINOPs, are floating-
point operations that take two operands. In many programs, most
floating-point instructions are BINOPs, such as add, subtract, and
multiply. The original LLVM interpreter has a macro that handles
these instructions, and we modify that macro such that it performs
the requested BINOP on both the native floating-point value and
the “real” value in MPFR. As mentioned above, both the floating-
point value and the “real” value reside in a SmartFloat object
managed by the interpreter.

4.4.2 Floating-Point Conversions

Floating-point conversion instructions are floating-point truncation
and extension operations that convert a floating-point value to ei-
ther a different floating-point format or an integer. For conversions
between floating-point numbers, we keep the “real” value in our
SmartFloat object unchanged and perform a type cast on the
floating-point value as required. Our aim is to be careful about con-
versions between floating-point values and integers because the two
representations of the same value in a SmartFloat object could
be rounded to different integers due to floating-point imprecision.
For this reason, we conduct a precision check before the conver-
sion. See section 4.5 for more details.

4.4.3 Function Calls

Function calls are the most complicated program constructs we
must support in a usable system. For ease of implementation and
also performance reasons, we categorize function calls in a program
into three classes and interpret them separately.

The first class of functions are called intercepted functions because
they are not actual function calls (i.e. an unconditional jump fol-
lowed by stack allocations) but are instead intercepted and short-
circuited within the interpreter. We initially referred to them as
math library functions, however, upon further examination, we dis-
covered we needed to intercept more functions than just math li-
brary functions in order to make the tool more usable. Despite the
change in terminology, though, most functions in this class are in-
deed math library functions. When a program calls a math library
function like sin, the interpreter will perform the requested math
operation on both the floating-point value and the real value - using
library functions from both the C math library and the MPFR math
library.

We also intercept the printf function due to its unique semantics
(e.g. depending on the format string, the actual output of printf
may be the same even if different floating-point values are passed
to it). See section 4.5 for more details.

The second class of functions are external functions. An LLVM IR
program may contain references to functions provided by external
libraries that are not available in LLVM bitcode format. For the tool
to be useful, these functions have to be properly handled because
otherwise our tool will not have been compatible with any program
that conducts any type of system calls, such as writing a file or
printing to stdout. Therefore, Real Semantics follows a solution
the original LLVM interpreter adopts which is to use a library called
Foreign Function Interface (FFI) [11] to solve this problem.

Since FFI has no knowledge about the SmartFloat object our
tool uses under the hood, we have to prepare arguments of FFI calls
properly so that all floating-point values are downgraded to native
floating-point formats. Our interpreter will inspect the type infor-
mation of the argument list at the call site and perform conversions
when necessary. Again, floating-point imprecision can potentially
affect the behavior of external functions. See section 4.5 for more
details.

The rest of the functions are internal functions declared and de-
fined within the LLVM IR program. These functions can handle
SmartFloat objects correctly because they are completely inter-
preted by the interpreter.

Another issue that comes up with supporting function calls is
memory management. Memory allocated on stack shall be freed
and reused after the function returns, but since we maintain a
SmartFloat map (see section 4.2) that is separate from the ac-
tual memory, it is hard to track all the floating-point values being
allocated and freed during a function call. Our reliance on type in-

formation also causes some issues when we try to handle malloc
and free correctly.

Consequently, we choose an approach that strikes a good bal-
ance between simplicity and completeness: we do not actively free
SmartFloat objects that represent floating-point values allo-
cated on stack, but we erase them from the map when we detect that
non-floating-point values have been written to overlapping memory
regions. This “on-demand” garbage collection scheme does assume
that the original program does not contain undefined behaviors like
reading from unallocated or uninitialized memory.

4.4.4 Untyped Memory Access to Floating-point Values

Untyped memory accesses bypass our special machinery handling
floating-point numbers in the interpreter because of the lack of type
information. Most of these accesses take the form of calling the
memcpy function or methods alike that move bytes around without
understanding the content of the data being moved. When floating-
point values stored in memory are being accessed in this way, the
interpreter cannot construct or keep track of SmartFloat objects
correctly. We originally planned not to address this problem as
we did not expect untyped floating-point accesses to be common.
However, we later discovered that due to compiler optimizations,
memcpy calls are often inserted by the compiler to initialize global
variables or large arrays. Due to the ubiquity of memcpy usage in
programs, we decided that we had to address this untyped access
problem - at the very least at a superficial level.

Thus, we use a workaround that also assumes the correctness of
the program being interpreted. Whenever we do a typed “load” of
a floating-point value from memory, we will first try to find it in
the SmartFloat map. If the memory address requested is not
found in the map, the interpreter will load a value as a floating-
point directly from the memory address supplied, construct a fresh
SmartFloat object out of this value, and insert it to the map.
Note that we are only doing this trick when we do a typed load.
We consider it to be sufficient because before anything interesting
(like a BINOP) happens, the floating-point value must be loaded
with its type information so that the execution engine, let it be
the interpreter or the actual hardware, can operate on it using the
correct semantics.

4.5 Detecting Errors

Throughout the program’s execution, the two values stored in each
SmartFloat are compared in order to determine if there was a
loss of precision using the typical floating-point semantics.

In order to compare the two values, the “real” representation is
converted into the closest possible floating-point representation. If
the two are not equal, our tool reports the loss of precision. The
programmer is told the expected and actual value, along with the
variable name and line number if available.

Although the current implementation of our tool requires that the
floating-point numbers used are the closest possible representations
of the real values, we could easily introduce an adjustable threshold
that would allow the programmer to set an “acceptable” range
of imprecision. If the floating-point representation is within an
“acceptable” range, we would not display any error messages.

The aforementioned comparisons are made when

• an external function is called with a SmartFloat as an argu-
ment,

• a comparison operation involving a SmartFloat occurs, or
• a conversion from a float or double to an integral type takes

place.

We need to check for a loss of precision before passing a SmartFloat
to an external function because we cannot perform the “real” com-
putations that correspond to the potential floating-point computa-
tions that occur within the external function.

There are a few exceptions to this rule. First, we intercept sev-
eral functions including 46 of the 58 cmath library functions
and perform the appropriate “real” computations alongside the
floating-point computations (see section 4.4.3 for more details).
As a result, we do not check for precision loss before passing a
SmartFloat to one of these intercepted cmath functions.

A second special case is printf. We aim to report a loss of pre-
cision in a printed floating-point value only if it will affect the
string printed. If the programmer uses printf to print a float
or double value, we make a best-effort attempt to compare output
string produced using the float or double value with the output
string produced using the “real” representation of the value. It is not
an exact comparison given the complexity of the LLVM interpreter
external function code (i.e. using sprintf is not straightforward).
If the best effort comparison determines that the strings are differ-
ent, a loss of precision is reported.

Additionally, when a comparison operation involving SmartFloat
occurs, we perform the comparison twice: once using the float
or double value(s) and once using the “real” representation of the
value(s). If the Boolean results of these two comparisons are not
equal, we consider the loss of precision significant and display an
error.

Finally, we check for a loss of precision when performing a con-
version from a float or double to an integral type because we
will no longer maintain the “real” representation of the value if it is
not a float or double.

5. Evaluation
In order to evaluate Real Semantics, we first describe our perfor-
mance on a particular program, then we present a number of case
studies that demonstrate a few possible use cases of our tool. For
the case studies, we chose programs that are significantly smaller
than those found in production code both because they allow us to
focus on the use of our tool rather than the intricacies of the pro-
grams and because we did not have the computational resources
required to test longer programs. The latter issue will be further
addressed in section 6.

Nevertheless, one could easily imagine how the relatively small
computations and algorithms described here might be used in the
context of a larger program; the instances of floating-point impreci-
sion would still exist and may have more significant consequences.

5.1 Ray Tracer

In order to get a sense of the performance of our tool, we considered
a ray tracing program. Ray tracing is technique used to generate
images by tracing the expected path of light through pixels in a
plane. We selected a basic program that creates a simple image,
shown in Figure 2 [6].

When executed natively, this program takes approximately 0.629
seconds to run. When executed using the (unmodified) LLVM
interpreter, it takes approximately 12 minutes and 20.860 seconds
to execute. Using Real Semantics (the modified LLVM interpreter),
it takes approximately 16 minutes and 10.675 seconds to execute.

It is clear that the major limitation is not our modifications to the
LLVM interpreter, but the interpreter itself. We discuss possible
solutions to this performance issue in the section 6.

Figure 2. Ray Tracer Output

1 int probAUB(float pa, float pb) {
2
3 float f1 = pa + pb - pa * pb;
4 printf("P(A)+P(B)-P(A)P(B)=%.8f\n", f1);
5
6 float f2 = 1 - (1 - pa)*(1 - pb);
7 printf("1-(1-P(A))(1-P(B))=%.8f\n", f2);
8
9 return 0;

10 }

Figure 3. Calculating P (A ∪B)

5.2 Probability

A simple program that demonstrates the impact of floating-point
semantics is one that calculates the probability that at least one of
two independent events occur, P (A ∪ B). Consider the following
two mathematically equivalent calculations:

1. P (A ∪B) = P (A) + P (B)− P (A)P (B)

2. P (A ∪B) = 1− (1− P (A))(1− P (B))

Regardless of the probabilities P (A) and P (B), these two formu-
las will produce the same result using real number semantics; how-
ever, if P (A) are small, the first formula will provide a much more
accurate result. This is because very small floating-point values
(e.g. P (A)P (B)) can be more accurately represented than floating-
point values that are close to 1 (e.g. (1−P (A)) and (1−P (B))).

Figure 5 shows a simple function that calculates P (A ∪ B) given
P (A) and P (B) using both formulas discussed above.

If we were to run this function with the input pa = 5E-8 and
pb = 2E-10, our tool would print the following:

P(A)+P(B)-P(A)P(B)=0.00000005

Possible precision loss at printf!

Our checker is expecting the output string: 5.02000006e-08,

but with floating-point imprecision the output string is

instead: 5.96046448e-08

1-(1-P(A))(1-P(B))=0.00000006

Whereas the first formula computed P (A ∪ B) without a notable
loss in precision, the error message informs us that we lost preci-
sion when computing P (A ∪B) using the second formula. Again,
we expect these two computations to be equivalent, but they pro-
duce different results under floating-point semantics when the prob-
abilities P (A) and P (B) are small.

Our tool correctly catches the loss of precision caused by the
second formula and reports it to the user.

5.3 Matrix Inversion

Calculating the inverse of a matrix can be used to solve linear sys-
tems. Before calculating the inverse, the programmer should first

1 int main()
2 {
3 float a[25][25], k, d;
4
5 k = 3;
6 a[0][0] = 3; a[0][1] = 5; a[0][2] = 2;
7 a[1][0] = 1; a[1][1] = 5; a[1][2] = 8;
8 a[2][0] = 6.6; a[2][1] = 11;
9 a[2][2] = 4.4;

10
11 d = determinant(a, k);
12 if (d == 0)
13 printf("not possible\n");
14 else
15 cofactor(a, k);
16 return 0;
17 }

Figure 4. Code Snippet of a Matrix Inversion Program

verify that the inverse of a matrix exists by checking whether the
determinant of the matrix is zero. However, due to floating-point
imprecision, simple equality checks like det == 0 are likely to
always return false. Figure 4 shows the main routine of a matrix
inversion program retrieved from the Internet [4]. Lines 6 through
9 show the input matrix, whose determinant should be zero in real
domain. Due to floating-point imprecision, however, numbers like
6.6 and 4.4 cannot be represented precisely and will be rounded.
This causes the check on line 12 to return false; thus, the program
will continue with the calculation and end up with a wildly inaccu-
rate result.

Running this program with our tool, however, reveals this problem.
During the execution of the program, our tool generated error
messages, such as

Possible precision loss at printf!

Our checker is expecting the output string: -0.000002,

but with floating-point imprecision the output string is

instead: -0.000015

These messages were triggered by a printf call that prints out the
calculated determinant of the matrix. The determinant values are
very different when calculated with different precisions, indicating
a significant imprecision error. The suspiciously small determinant
values derived by either precision should alert the programmer of
the possibility that an inverse actually does not exist.

Instead of doing a simple equality check like the one on line 12,
an experienced programmer would check whether the calculated
value falls within a small interval around zero, and let the program
generate a warning if this is the case. This approach is theoretically
satisfying as well: computing the equality of two real numbers
is generally uncomputable. Checking for inclusion in a rational-
bounded interval is, in contrast, computable.

5.4 Numeric Integral

We also used our tool to detect floating-point imprecision in nu-
meric integral calculation. Figure 5 shows a program that computes
the numeric integral

∫ π
0
sin(x)dx using a step size of 0.0001. Our

tool reports multiple error messages while the program is running:

Precision loss at < (numeric int.c:9)

got 1 = 3.14065 < 3.14159

expected 0 = 3.141600e+00 < 3.141593e+00

...

Possible precision loss at printf!

1 int main() {
2 float lower = 0.0;
3 float upper = M_PI;
4 float step = 0.0001;
5
6 float result = 0.0;
7 float x;
8
9 for (x = lower; x < upper;

10 x += step) {
11 result += sin(x) * step;
12 }
13
14 printf("%f\n", result);
15
16 return 0;
17 }

Figure 5. Calculating
∫ π
0
sin(x)dx

−b±
√
b2 − 4ac

2a

Figure 6. The Quadratic Formula. We consider it with ± = −.

Our checker is expecting the output string: 2.000000,

but with floating-point imprecision the output string is

instead: 2.000405

The “Precision loss at <” messages indicate that the loop
condition check at line 9 of the program returned different results
between native float and MPFR. It is shown in this example that the
loop executed for extra iterations under native float format, which
resulted in a slightly larger integral result.

This problem exemplifies how Real Semantics contributes both to
finding functional correctness bugs as well as efficiency bugs. Due
to floating-point imprecision, several extra and unnecessary loop
iterations were performed that actually minimized accuracy. Real
Semantics points towards the need for a more precise representa-
tion or perhaps a different loop iteration style.

5.5 Quadratic Formula

The quadratic formula (Figure 6) needs neither introduction nor
justification of its importance. As such, we proceed directly to an
exploration of its error properties. We follow a similar development
to Panchekha et al. but using our tool in place of Herbie [13].

We used Real Semantics to explore the floating-point imprecision
on a small test suite for the following test inputs:

a = 100, b = −8356218543× 10201, c = −321432

Real Semantics points out that the double-precision result,−inf , is
different from the higher-precision result−3.8466203145113220×
10−206. We see that a very small value has become negative infinity
due to imprecision. This is often caused by catastrophic cancella-
tion. In our case, the numerator should evaluate to almost zero. To
address this issue we re-define the quadratic formula piecewise:

2c

−b+
√
b2 + 4ac

b < 0

−b−
√
b2 − 4ac

2a
b > 0

The former is a simplification allowed by the observation that

x− y ≈ x2 − y2

x+ y

This enables us to eliminate the square root, yielding:

b2 − b2 − 4ac

2a(−b+
√
b2 − 4ac)

which simplifies to

2c

−b+
√
b2 − 4ac

Note that the subtraction in the numerator has become an addition
in the numerator, thus eliminating the catastrophic cancellation:
(−b)− (−b).

Unfortunately, on the aforementioned parameters, a = 100, b =
−8356218543 × 10201, c = −321432, our algorithm yields 0
instead of a result on the order of 10−206; however, we have already
infinitely improved our result.

Next, we consider a test case involving a large positive b, mainly:

a = 4328973e202, b = 432789658× 10201, c = 2134e2

In this case, a series of cancellations between large values should
yield a final result near−9. In reality, we compute−inf . Returning
again to our expression, we note that large values of b will overflow
when squared. We first try re-using the same expression for nega-
tive b when b is large:

2c

(−b+
√
b2 − 4ac)

b < 0 or b > 10127

−b−
√
b2 − 4ac

2a
b > 0

This improves the answer to 0, but not quite to the desired −9.
Unfortunately, we have now introduced catastrophic cancellation
when the b is a large positive number because the denominator
approaches −b+ b.

For large positive values of b, we can manipulate the discriminant
into the form

√
1 + ε, which has a series expansion for small ε of

1 + 1
2
x + O(x2). Inserting this term and massaging the equation

slightly, we reveal a triply piecewise defined function:

1 float sumBinary(void) {
2 float sum = 0;
3 for (int i = 0; i < 10000; i++) {
4 sum += 0.0001;
5 }
6 printf("%.10f\n", sum);
7 return sum;
8 }

Figure 7. Summing Binary Numbers

2c

−b+
√
b2 − 4ac

b < 0

−b−
√
b2 − 4ac

2a
0 ≤ b ≤ 10127

− b

a
+

c

b
b > 10127

Now, the result of our double-precision calculation has as many
accurate bits as the result of the higher-precision calculation! How-
ever, we are still inaccurate in a few digits on the following inputs:

a = 100, b = −8356218543× 10201, c = −321432
a = −1× 1010, b = −1e10, c = 1e10

a = 3.214323× 10−201, b = 5e− 100, c = 1.32423

We leave it as an exercise to the reader to track down the source of
these remaining inaccuracies.

5.6 Floating-Point Inaccuracies in Excel

For our final case-study, we wanted to see how our tool would fare
on common floating-point errors. Microsoft Support created a list
of five examples of simple floating-point computations that may
give inaccurate results in Excel, a spreadsheet application that is
widely used for computations [1]. We tested our program on C
versions of the Excel examples, which are described in detail below.

5.6.1 Example Using Very Large Numbers

When 1.2E200 and 1E100 are added in Excel, the resulting value is
1.2E200. Our tool cannot catch the loss of precision in this example
since 1.2E200 and 1E100 are too large to represent as floating-
point numbers; however, we can detect this type of error when the
numbers are within the range of possible C floating-point values.

5.6.2 Example Using Very Small Numbers

When 0.000123456789012345 and 1 are added in Excel, the re-
sulting value is 1.00012345678901 instead of 1.000123456789012345.
Our tool catches this loss of precision in the equivalent C program.

5.6.3 Repeating Binary Numbers and Calculations with
Results Close to Zero

If 0.0001 is added together 10000 times in Excel, the resulting
value is 0.999999999999996 instead of 1. Our tool catches this
loss of precision in the equivalent C program, shown in Figure 7.

5.6.4 Example Adding a Negative Number

Excel computes (43.1− 43.2)+1 as 0.899999999999999 instead
of 0.9. Our tool is able to catch this loss of precision if the compu-

tation is done in multiple steps. In this case, our tool will produce
an error message for a program containing the following C code:

float A1 = (43.1 - 43.2);

A1 += 1;

printf("%.10f", A1);

but not when it is replaced with:

float A1 = (43.1 - 43.2) + 1;

printf("%.10f", A1);

We are unable to detect the floating point imprecision in the second
piece of code because the loss of precision occurs before the value
is stored as a float. In other words, by the time we are able to
create a SmartFloat for A1, the loss of precision has already
occurred. This is one limitation of our tool.

5.6.5 Example When a Value Reaches Zero

Excel computes 1.333+1.225−1.333−1.225 as−2.2204460492
5031E − 16 instead of 0. Similar to the previous example, our tool
is able to catch this loss of precision if the computation is done in
multiple steps.

6. Future Work
Real Semantics achieved a number of goals outlined at the begin-
ning of this paper. Nevertheless, there is still room for growth.
Specifically, we find that there are key areas where our system
could be further optimized to allow for better results.

6.1 Performance Optimization

The performance of our tool is a limiting factor right now, and
its poor performance is largely due to the overhead of inter-
preting LLVM bitcode. The interpreter unfortunately introduces
large overhead to all instructions, including integer and branch
instructions that have nothing to do with floating-point seman-
tics. Maintaining the internal states of the interpreter like the large
SmartFloat map also comes at a cost that is largely unnecessary
if we can execute (at least part of) the program natively.

A potential solution to this issue would be to re-write our tool as a
compiler pass. Doing so would allow the non-floating-point-related
portion of the program to run completely on the native platform.
This is an approach that we would potentially explore as part of
future work.

If our tool existed as a compiler pass we could additionally im-
prove the precision of our high-precision floating-point numbers.
We do not see floating-point numbers until the C compiler has
transformed them to single- or double-precision bitvectors. Nu-
meric literals, such as 3.3 that are not accurately representable in
double-precision are already inaccurate by the time we generate
a higher-precision analogue. This is particularly disappointing be-
cause the high-precision value is initialized by extending the low-
precision value with zeros.

6.2 Evaluation Optimization

Part of our larger goal was to evaluate our tool by running large
programs and finding meaningful floating point precision errors.
However, due to the performance issues outlined above, we were
unable to run significantly large programs. In the future, once
we optimize performance, we would like to evaluate our tool by
running large programs or mathematical suites that would allow us
to find a greater variety of floating-point precision bugs.

In general, had we had more time, we would have liked to further
automate the developing process by automatically generating test

inputs. Such improvements would allow us to have a shorter devel-
opment life-cycle and spend more time further optimizing the tool.
Similarly, although we currently have a hack for memcpy, in the
future, we would like our tool to be able to better handle memory
issues.

Analyzing large programs and suites of algorithms almost certainly
requires a significant improvement to our testing strategy. In the
future, we want to incorporate randomized swarm testing to alle-
viate the need for the user to custom design test-suites that reveal
floating-point imprecision. As we have learned, programmers have
difficulty imagining the way in which their programs may fail.

7. Discussion
7.1 Limitations

When using Real Semantics it is important to keep in mind two key
limitations of this system:

• higher-precision values are not arbitrary precision values, and
• higher-precision results do not reveal the correct answer, just a

more precise answer.

An obvious extension to Real Semantics is the use of arbitrary pre-
cision arithmetic in place of MPFR’s fixed, high-precision arith-
metic. Arbitrary precision arithmetic permits the use of whatever
precision is necessary to represent intermediate results. Moreover,
the memory and computation requirements adapt to the inputs
given.

Another possible extension is additionally reporting the results of
applying the given inputs to an obviously correct reference im-
plementation. Reference implementations guard against numerical
transformations to an algorithm that changes its functional behav-
ior. In particular, the “return 0” function will always be maximally
precise.

7.2 Applications

Real Semantics nicely complements existing techniques for static
analysis. Particularly because it dynamically searches for precision
loss in imperative code, including code with loops. In this manner,
it is more general and limited than Herbie [13]. The two tools
together form a powerful work-flow for debugging and developing
floating-point algorithms. Real Semantics directs the programmer
towards problematic areas of code. Once the algorithm at fault is
crisply circumscribed and understood, Herbie may be employed to
automatically generate a precise-by-construction implementation
of the problematic algorithm.

Real Semantics also holds pedagogical value. Floating-point impre-
cision often seems arbitrary to students. Real Semantics provides
a mechanical assistant that calculates an approximation to the er-
ror inherent in a given floating-point number. Calculating this error
from first principles is complex, even with specific floating-point
inputs. Because Real Semantics permits the user to provide the test
cases, the student can explore the space of floating-point numbers
independently. This is not easy with verification or static analysis
tools. An improvement that benefits both students and developers
would be a visual representation of inputs that cause dramatic re-
ductions in floating-point precision.

8. Conclusion
We built Real Semantics, a dynamic floating-point imprecision
detector that runs on a modified LLVM IR interpreter. Our tool
tracks higher-precision representations of the numbers calculated

by the interpreted program through the use of MPFR to calculate
actual real numbers. Further, Real Semantics notifies the user of
imprecision only when it substantially changes program behavior,
which results in a high-level of usability. Lastly, our tool identifies
precision loss events by line number and variable name in order
to allow the user to more easily find and solve, if necessary, any
floating-point precision errors.

In this paper, we have outlined our tool in detail, including other
related work, our approach for the implementation, and the various
test cases used to aid in our evaluation. We also outlined some
limitations as explained in the need for future work as it relates
to performance and evaluation optimizations. All in all, we have
presented a tool that can help users detect floating point imprecision
in programs written in C.

As computers continue to increase adoption across all levels of so-
ciety and more users become programmers – fully fledged citizens
in interacting with their computers – the need to support program-
mers using floating-point arithmetic grows only more urgent. We
have three fruitful directions of attack right now: analysis, precise-
by-construction, and verification. Verification provides the bedrock
on which all other techniques can rely for assurance. Analysis sup-
ports both legacy code and explorations of custom written code.
Ultimately, precise-by-construction techniques may supersede ana-
lyzers just as memory-safe languages have taken large market share
from the unsafe languages.

References
[1] Floating-point arithmetic may give inaccurate results in excel. URL

https://support.microsoft.com/en-us/kb/78113.
[2] lli - directly execute programs from llvm bitcode. URL http:

//llvm.org/docs/CommandGuide/lli.html.
[3] LLVM language reference manual. URL http://llvm.org/

docs/LangRef.html.
[4] C program to find inverse of a matrix. URL http://www.

sanfoundry.com/c-program-find-inverse-matrix/.
[5] Gnu mpfr. URL http://www.mpfr.org/.
[6] Basic ray tracer, stage 1, 2012. URL http://renderspud.

blogspot.com/2012/04/basic-ray-tracer-stage-1.
html.

[7] E. T. Barr, T. Vo, V. Le, and Z. Su. Automatic detection of
floating-point exceptions. SIGPLAN Not., 48(1):549–560, Jan 2013.
ISSN 0362-1340. . URL http://doi.acm.org/10.1145/
2480359.2429133.

[8] S. Boldo and J.-C. Filliatre. Formal verification of floating-point
programs. In Computer Arithmetic, 2007. ARITH ’07. 18th IEEE
Symposium on, pages 187–194, June 2007. .

[9] S. Boldo, J.-H. Jourdan, X. Leroy, and G. Melquiond. Verified com-
pilation of floating-point computations. Journal of Automated Rea-
soning, 54(2):135–163, 2015. ISSN 0168-7433. . URL http:
//dx.doi.org/10.1007/s10817-014-9317-x.

[10] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys (CSUR), 23(1):
5–48, 1991.

[11] A. Green. libffi - a portable foreign function interface library. URL
https://sourceware.org/libffi/.

[12] B. Lambov. The reallib project. URL http://daimi.au.dk/

˜barnie/RealLib/.
[13] P. Panchekha, J. R. Wilcox, and Z. Tatlock. Automatically improving

accuracy for floating point expressions. 2015.
[14] K. Vuik. Some disasters caused by numerical errors, 2006.

URL http://ta.twi.tudelft.nl/users/vuik/wi211/
disasters.html.

