
Type-Aware Transactions for Faster Concurrent Code

Nathaniel Herman
Harvard University/Dropbox

nherman@post.harvard.edu

Jeevana Priya Inala
MIT

jinala@mit.edu

Yihe Huang Lillian Tsai
Harvard University

yihehuang@g.harvard.edu
lilliantsai@college.harvard.edu

Eddie Kohler
Harvard University

kohler@seas.harvard.edu

Barbara Liskov
MIT

liskov@piano.csail.mit.edu

Liuba Shrira
Brandeis University

liuba@brandeis.edu

Abstract
It is often possible to improve a concurrent system’s perfor-
mance by leveraging the semantics of its datatypes. We build
a new software transactional memory (STM) around this
observation. A conventional STM tracks read- and write-
sets of memory words; even simple operations can gener-
ate large sets. Our STM, which we call STO, tracks ab-
stract operations on transactional datatypes instead. Parts
of the transactional commit protocol are delegated to these
datatypes’ implementations, which can use datatype seman-
tics, and new commit protocol features, to reduce bookkeep-
ing, limit false conflicts, and implement efficient concur-
rency control. We test these ideas on the STAMP benchmark
suite for STM applications and on our own prior work, the
Silo high-performance in-memory database, observing large
performance improvements in both systems.

1. Introduction
Transactions simplify concurrent programming by lim-
iting interactions among threads. Transactional memory
(TM) [26] brings this power and ease of use to general-
purpose multicore parallel programming. TM transactions
are linearizable [30]; they run as if isolated and atomic,
and aborted transactions have no effect on global state. A
TM programmer (or TM compiler) labels accesses to shared
memory and surrounds them with “transaction” blocks. The
TM system takes care of everything else, from concurrency
control to deadlock prevention.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

EuroSys ’16 April 18–21, 2016, London, United Kingdom
Copyright © 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2901318.2901348

However, TMs have performance issues. In hardware
TM, fundamental microarchitectural limitations, such as
bounds on maximum transaction size, mean some valid
transactions can never commit [51]. Implementations will
gradually improve, but general-purpose transactions must
be backed up by software. Unfortunately, software TM
performance severely lags that of purpose-built concurrent
code [7], since STM implementations have high costs for
bookkeeping and concurrency control. Transaction systems
must track all objects accessed during transaction execu-
tion, either by locking them or by taking snapshots for later
validation, and in STM, these objects are typically mem-
ory words. This is universal, since every concurrent data
structure is stored in memory, but expensive; for instance,
a binary search tree lookup must track every word accessed
in the path from the root. Word-based bookkeeping has high
overhead (the tracking set contains many words that must
be tracked and validated). It also makes concurrency control
more expensive by making conflicts more likely (any con-
current change to the path will cause the transaction to abort,
including rotations with no semantic effect on the lookup).

Our work makes STM faster and more general by basing
it instead on abstract datatype operations. We call our de-
sign STO, for software transactional objects. STO’s commit
protocol works with abstract reads, writes, and predicates
on transactional datatypes, rather than concrete accesses to
untyped memory. Datatype callbacks perform all concrete
locking, version verification, and data structure modifica-
tion. This separation of concerns lets STO track hundreds
of times fewer objects than TL2 [12], a popular STM imple-
mentation.

STO supports datatypes from vectors and trees to hash
tables and priority queues. Datatypes can leverage their se-
mantics to reduce false conflicts and improve scalability. For
instance, in a conventional STM, all increments to a trans-
actional counter conflict (since increment both reads and
writes the counter). In STO, in contrast, a counter imple-

menter can take advantage of increment’s commutative se-
mantics: though increments will serialize at commit time,
concurrent increments need not abort. New features of our
commit protocol, such as optimistic predicate verification,
give datatypes further power to avoid conflicts.

STO comprises a core system that implements the com-
mit protocol and an extensible library of transactional data-
types. Most programmers will not need to implement new
datatypes, since they can use those available in libraries;
we hope this makes it easier to write transactional pro-
grams that both avoid bugs and perform well. However, ad-
vanced programmers can add new datatypes, either general
or application-specific [32]. As with any efficient concur-
rent datatype, a STO transactional datatype can be hard to
write, but STO’s helper classes and design patterns ease this
burden and our experience argues this skill can be learned.

Other STM systems have partially integrated concurrent
datatypes, some using new layers of concurrency control,
such as pessimistic lock tables and undo logs [25] or pred-
icate tables of STM words [2], and others co-developing a
commit protocol and a datatype implementation [23, 24].
STO has lower overhead than many of these systems, but it
also can support their ideas separately or in combination. For
instance, some STO datatypes gain performance by mixing
aspects of optimistic and pessimistic concurrency control.

STO scales and performs well. On a variety of STAMP
benchmarks, it exceeds the performance of the fast TL2
software transactional memory by factors ranging from
1.4x to 118x. The largest speedups were achieved using
STO’s support for application-specific conflict reduction.
We also match or outperform transactional boosting [25]. Fi-
nally, our reimplementation of the very fast Silo in-memory
database [48] exceeds Silo’s performance by 1.23x or more
on the TPC-C benchmark, even though Silo was heavily op-
timized. Our reimplementation contains far less code, and
that code is easier to understand.

Our contributions are:
• The STO system: a lean, fast transactional memory

system for C++ that supports arbitrary transactional
datatypes (§3).

• A library of easy-to-use transactional datatypes for STO,
including lists, hash tables, and trees (§4).

• Design patterns for co-designing concurrent data struc-
tures with a transactional memory.

• Our evaluation and our STO-Silo implementation (§5).

2. Related work
Transactional memory [26] aims to simplify concurrent pro-
gramming. Though the performance of transactional mem-
ory systems has been extensively optimized [22], overheads
due to bookkeeping and false conflicts can lead to unsatis-
factory performance [6, 7], even in high-performance TMs
like TL2 [12] and LarkTM [52].

The SwissTM transactional memory [14] improves on
TL2’s performance using several techniques. It tracks mem-
ory in 4-word groups, which has up to 4x less bookkeeping
overhead than single-word tracking but fewer false conflicts
than coarser cache-line tracking. STO uses datatype integra-
tion to achieve a similar goal, but datatype semantics let us
reduce bookkeeping further (by up to 40x) without inducing
false conflicts. SwissTM’s “mixed invalidation” scheme has
some of the advantages of both pessimistic and optimistic
concurrency control. Write/write conflicts are detected early
(written locations are pessimistically locked during transac-
tion execution), while read/write conflicts are detected lazily
(concurrent reads can often proceed despite locks). Mixed
invalidation is complementary to our work; we plan to eval-
uate it in our datatypes. Although mixed invalidation can re-
duce false conflicts, SwissTM, like any word-based STM,
cannot support STO’s more advanced forms of application-
specific conflict prevention.

Non-transactional APIs, such as open nesting [40], elas-
tic transactions [16], transactional collection classes [5], and
early release [28], can eliminate some false conflicts, and
other proposals, such as SpecTM [13], allow programmers
to reduce the bookkeeping costs for small subsets of transac-
tions, such as those that read and write four or fewer mem-
ory locations. Both these lines of work complicate the TM
abstraction.

Object-based STMs [19, 29] work at the object level
rather than the word level. However, unlike STO, these sys-
tems make shadow copies of any modified objects. These
copying costs can be large, and false conflicts are not re-
duced. Multi-version protocols such as JVSTM [3, 17, 18]
can reduce conflicts for read-only transactions, but maintain
even more copies.

Our work most relates to prior research that speeds up
memory transactions using abstract data types, including
boosting [25], automatic locking [20], and predication [2].
These techniques are based on concurrent data structures
written outside the STM. Relying on datatypes for concur-
rency control lets these systems exploit operation commuta-
tivity, avoid false conflicts, and reduce conventional STMs’
single-thread overheads, but to implement transactional se-
mantics, the systems duplicate some work their datatypes al-
ready perform.

Boosting [25] wraps unmodified concurrent datatype im-
plementations for use in STM. Transactional semantics is
ensured by a separate table of so-called abstract locks.
Boosting wrapper functions map each operation onto the
corresponding abstract locks, which are acquired before the
underlying operation is called and held until the transaction
commits or aborts. Thus, the transactional wrapper for a map
insert operation would acquire the abstract lock correspond-
ing to the requested key. If operations access distinct abstract
locks, they can take place concurrently, so datatype seman-
tics determine the abstract lock mapping. Wrappers use undo

logging to ensure modifications are undone if the transaction
aborts, so every wrapped operation must have an inverse.
Automatic locking [20] also synthesizes a boosting-style ab-
stract lock mapping from commutativity specifications; a
similar approach could potentially help STO datatype au-
thors choose transaction items (see §3.2).

Predication [2] also supports transactional access to fast
concurrent datatypes via a shared-memory concurrency con-
trol table, but this table consists of memory words controlled
by the underlying conventional STM. Wrapper operations
access STM “predicate words,” where each predicate word
corresponds to a semantic property of the set or map object
(such as the absence of a key). A lookup on an absent key in-
serts a predicate word into this table, introducing a difficult
garbage collection problem STO avoids.

These systems complement STO, whose core commit
protocol is flexible enough to support their techniques in-
dividually and in combination. Although a boosting imple-
mentation strategy can be somewhat simpler than full trans-
actional integration, STO’s approach offers advantages; un-
like boosting, for example, STO datatypes can easily support
modifications that have no inverse.

STO, like all transaction designs using abstract datatypes,
builds on foundational work by Weihl [49], who described
transactional atomicity in terms of datatype semantics. Weihl
defines a local atomicity property implementations must
satisfy to guarantee transaction serializability, while tak-
ing commutativity into account. He considers some aspects
of how operation semantics affect implementation require-
ments, such as history log compaction or view computation,
but does not focus on concrete implementation.

Our methods for avoiding false conflicts have been used
in other contexts. In addition to Weihl, early work on re-
ducing transaction conflicts by exploiting commutativity
and other semantic properties include Schwartz and Spec-
tor [45], Badrinath and Ramamritham [1], and Korth [31].
More recent techniques on exploiting commutativity in
replicated data types include work on CRDTs [46] and
much other research in the database community. This work
is complementary with ours: a STO datatype designer can
use commutativity reasoning to improve the performance of
in-memory transactions.

The Galois system [32, 33] proposes a framework in
which individual data structures specify operations that can
and cannot commute, and uses it to improve the performance
of two irregular parallel graphics applications. This demon-
strates that type-specific concurrency control of the kind sup-
ported by STO is rich with possibilities beyond fundamen-
tal datatypes. Galois focused not on composing serializable
transactions, but on a systematic method for constructing
commutativity checkers for type-specific conflict detection;
this work is complementary to ours.

STO’s flexibility lets datatype designers adopt many ideas
from the literature on concurrent datatype design, including

locking, optimistic verification, direct updates (eager ver-
sioning), and deferred updates (lazy versioning) [22, 27].
Our datatypes take advantage of this flexibility; for instance,
our map data structures use direct updates for inserted items
and deferred updates for all other modifications (§4), and
our list datatypes use some techniques like those in the op-
timistic transactional lazy set [24]. Lock-free compare-and-
swap designs tend to interact badly with transactions, how-
ever, since transactional commit protocols use locking to
ensure that multiple modifications appear to commit atom-
ically.

Recent work on reducing bookkeeping and conflict avoid-
ance costs in STM includes techniques for exploiting hard-
ware transactional memory [4, 10, 11, 37, 50]. These efforts
focus on structuring transactions to reduce conflicts and min-
imize the transaction data footprint so they can run in hard-
ware. This work is orthogonal to the issues discussed here,
and we plan to investigate combining STO with HTM. For
instance, a datatype could use HTM to atomically read a
value and its associated version number.

3. Design
This section describes the design and implementation of
STO’s transaction system.

3.1 Overview
STO is a C++ library. STO user transactions are C++ code
blocks, delimited by TRANSACTION and RETRY, that invoke
operations on transactional objects. Transactions have lin-
earizable effects: operations invoked by uncommitted trans-
actions aren’t visible elsewhere, and operations invoked by
committed transactions have the same effects as if the com-
mitted transactions ran in some serial order. Aside from the
TRANSACTION blocks, STO programming feels like conven-
tional C++ programming. Transactional datatypes are com-
patible with the C++ standard library and support program-
ming patterns such as iterators.

Here is a STO balance-transfer function:

bool transfer(TBox<int>& bal1, TBox<int>& bal2,
int amt) {

TRANSACTION { // open new transaction
if (amt < 0 || bal1 < amt)

return false;
bal1 = bal1 - amt;
bal2 = bal2 + amt;

} RETRY(true); // commit with retry
return true;

}

The bal1 and bal2 variables are transactional objects with
transactional datatype TBox<int>. This type is a transactional
proxy for an int; its contents are the int and a version num-
ber/lock field that supports safe concurrent access and trans-
actional bookkeeping (§3.4 has details). TBox provides trans-
actional assignment and convert-to-integer operations, so the
expression bal1 = bal1 - amt contains a transactional read

of the current balance and a transactional write of the new
balance. STO provides opacity (§3.6), so the transaction will
never observe inconsistent state.

Transactions can also access non-transactional objects
such as amt. To maintain transactional correctness, these
objects should generally be thread-local or immutable.

STO’s commit protocol runs at the end of a TRANSACTION

block. On success, any writes are installed into the transac-
tional objects, making them visible to other transactions. On
failure (for instance, if a concurrently-executing transaction
causes a conflict), the writes are discarded and STO eval-
uates the RETRY expression. If the expression is true, STO
retries the transaction; if false, STO throws an Abort excep-
tion. This retry check also occurs when the transaction aborts
before the commit protocol begins, either because the user
initiates an abort or because the transaction observes incon-
sistent state (see §3.6). If control leaves the block in another
way (by return, break, or an exception other than Abort),
STO causes the transaction to abort with no retry. A hidden
guard object ensures such aborts are clean.

3.2 STO platform
STO comprises a shared core and an extensible library of
transactional datatypes. Figure 1 introduces the core inter-
face, and Figure 2 shows this interface in use in the TBox

datatype’s implementation.
The core implements the commit protocol and provides

common functionality used by datatypes, such as operations
on version numbers. Its central feature is an efficient per-
transaction tracking set in which datatypes record informa-
tion for the commit protocol.

Transactional datatypes are concurrent datatypes that pro-
vide transactional operations. All transactional datatypes in-
herit from TObject, which defines a callback interface for the
commit protocol, but user code never calls TObject methods
directly. STO’s library of transactional datatypes includes
TBox<T>, counters, arrays, hash tables, linked lists, binary
search trees, Masstree [36], and an implementation of word-
based STM; advanced users can add their own.

A transactional datatype is, first and foremost, a concur-
rent datatype—it must support safe concurrent access from
multiple threads—but its operations must additionally be
implemented in a transaction-safe way. This imposes three
main requirements: version numbers, tracking set integra-
tion, and commit callbacks.

First, transactional datatypes must use version numbers
to track updates. A version number comprises an ID and
some helper bits, including a lock bit. The ID is the ID
of the committed transaction that most recently changed
the corresponding state. When the lock bit is set, the cor-
responding state is being updated and is unsafe to access.
Many datatypes reduce conflicts by assigning multiple ver-
sion numbers per object. Each version number typically pro-
tects a different logical segment of state, where segments are
defined so that operations accessing disjoint sets of segments

commute. For instance, a transactional array has one logical
segment, and one version number, per index.

Second, datatypes’ transactional operations must inte-
grate with the STO core’s tracking set. Assuming optimistic
validation with delayed updates, this integration requires
three things. (1) When a transactional operation observes
object state, it must record information about what was read
(typically a version number) in the tracking set. (2) When a
transactional operation would logically modify object state,
it must record information about the modification in the
tracking set. (3) When a transactional operation observes
state that it may have modified itself, it must check the track-
ing set for an outstanding modification and return the cor-
responding result. STO supports other concurrency control
designs, but the principle is the same: any commit- or abort-
time actions, such as validation, installation, and rollback,
are recorded in the tracking set.

The tracking set’s representation is an array of transac-
tion items of class TItem. Tracking sets are thread-local—
each transaction has its own, and each thread runs at most
one transaction at a time—so TItems need not protect against
concurrent access. Sto::item(owner, key) returns the unique
TItem in the current thread’s tracking set identified by owner

and key, where owner is a pointer to a transactional object
and key is an object of arbitrary type (but usually an integer
or pointer). Keys distinguish between logical segments of
the owner object’s state; for instance, our array’s items use
element indexes as keys. If the requested TItem doesn’t exist
yet, the Sto::item method initializes it and adds it to the
current transaction’s tracking set.

A TItem can contain a read version, a write value, and a
predicate value. The presence of a read version or predicate
value tells STO that the item should be verified during the
commit protocol, and the presence of a write value indicates
that the item should be locked during the commit protocol
and the install method should be called if the transaction
commits. TItems also offer several bits of flags available for
datatype use. TItems are initially empty: there are no versions
or values and all flags are zero. Read version and predicate
value are mutually exclusive.

TItem predicate values, write values, and keys have arbi-
trary type. Small objects, such as pointers and integers, are
stored directly in the TItem. Larger objects are stored in a
separate per-transaction memory buffer, with the item hold-
ing pointers into the buffer; STO ensures the buffered val-
ues are properly destroyed when the transaction completes.
This lets STO support arbitrary values without common-
case overhead. It also turns TItem into a union that can
hold objects of any type. Datatype implementations must
ensure that they extract objects from TItems using the right
types; for instance, to access the key of an item created with
Sto::item(o, 1), a datatype should call item.key<int>().

Finally, transactional datatypes must define callbacks for
the commit protocol. STO commits transactions using a pro-

namespace Sto:
// look up a transactional item, creating if necessary:
TItem item<K>(TObject* owner, K key);
// return the committing transaction's version:
TVersion commit_id() const;

class TItem: // transactional item; size 4 words (32B)
TObject* owner() const;
K key<K>() const;

bool has_read() const; // read tracking
// observe a version number and check opacity:
void observe(TVersion vers);
// atomically read value and observe vers:
R read<R>(TWrapped<R>& value, TVersion& vers);
// check whether a version number changed:
bool check_version(TVersion& vers) const;

bool has_write() const; // write tracking
W write_value<W>() const;
void add_write<W>(W write_value);

bool has_predicate() const; // predicate tracking
P predicate_value<P>() const;
void add_predicate<P>(P predicate_value);

unsigned flags() const; // user flags
void set_flags(unsigned flags);

class TObject: // datatype superclass for commit callbacks
// called in phase 1 to lock write items:
bool lock(TItem it);
// called in phase 1 to upgrade predicates:
bool check_predicate(TItem it);
// called in phase 2 to validate reads:
bool check(TItem it);
// called in phase 3 to install write items:
void install(TItem it);
// called after commit/abort to unlock write items:
void unlock(TItem it);
// called after commit/abort to clean up as necessary:
void cleanup(TItem it, bool committed);

Figure 1. The core STO interface.

tocol based on optimistic concurrency control [34]. Its core
functions, however, are delegated to datatype callbacks on
the transaction’s TItems. This delegation offers datatype de-
signers considerable flexibility. For example, datatypes can
use pessimistic locking for some or all updates, in which
case their lock methods do nothing and their cleanup meth-
ods roll back uncommitted modifications. Datatypes are free
to reorganize their memory layouts, since the STO core does
not assume that locks and version numbers stay in the same
place.

3.3 Basic commit protocol
We now describe STO’s basic commit protocol. Some ad-
vanced features, such as predicates, are described later.

On entering a TRANSACTION block, STO starts a new
transaction and initializes the calling thread’s tracking set
to empty. The commit protocol runs at the end of the
TRANSACTION block, when the transaction tries to commit.

The protocol proceeds in phases. In Phase 1, all modified
TItems are locked. This blocks other conflicting modifica-
tions until the current transaction completes, and ensures that
other transactions can see that modifications are in progress.
The STO core calls it.owner()->lock(it) for each modified
item it (that is, each item where it.has_write() is true).
The lock callback must lock the relevant segment of state,
using bounded spinning to prevent deadlock; if a lock at-
tempt fails, the transaction aborts.

In Phase 2, all read version numbers are verified to ensure
that no conflicting updates have occurred. STO calls check

for each read item it (that is, each item with it.has_read()

true). The check callback must compare the tracking set’s
stored version number with the live version number in the
corresponding shared state, returning true if and only if the
version number hasn’t changed and is not locked by any
other transaction. If a version check fails, the transaction
aborts.

If Phase 2 completes successfully, the transaction will
commit at that point. The STO core assigns the transaction
an ID by advancing a global version clock with an atomic
increment instruction. This produces a version number guar-
anteed to be larger than that of any prior transaction.

In Phase 3, modifications are installed. STO calls install
for each modified item it. This callback makes the modified
value visible to other threads and updates corresponding
version numbers to the transaction’s ID.

The final cleanup phase runs whether the transaction
commits or aborts. All items that were locked are un-
locked via calls to unlock callbacks. Then STO calls the
cleanup(it, ok) callback for every modified item, where ok

is true if the transaction committed and false if it aborted.
This callback can undo effects of aborted transactions (for
datatypes that use direct updates, §4) and clean up after
committed transactions (for instance, free memory that was
unlinked from the data structure). They can also perform
cleanup actions that aren’t visible via the specification, such
as data structure rebalancing. Delaying these actions to the
cleanup phase is useful for scalability since it reduces the
time spent holding transaction locks.

3.4 Example
Figure 2 shows how this comes together. TBox<T>’s trans-
actional operations, operator T for transactional read and
operator= for transactional assignment, record version num-
bers and write values in the box’s TItem. (Since TBox has a
single logical segment of state, only one TItem is required.)
Transactional operations are chosen to ease user program-
ming: since conversion is used to read and assignment is
used to write, a TBox<T> can be used anywhere a T is ex-
pected. We also see the use of several helper classes pro-

class TBox<T> : public TObject {
public: // transactional operations:

operator T() const {
auto item = Sto::item(this, 0);
if (item.has_write())

return item.write_value<T>();
else

return item.read(value_, vers_);
}
TBox<T>& operator=(const T& new_value) {

Sto::item(this, 0).write(new_value);
return *this;

}
// commit callbacks:
bool lock(TItem item) {

return vers_.try_lock();
}
bool check(TItem item) {

return item.check_version(vers_);
}
void install(TItem item) {

value_.store(item.write_value<T>());
vers_.set_version(Sto::commit_id());

}
void unlock(TItem item) {

vers_.unlock();
}

private:
TWrapped<T> value_;
TVersion vers_;

};

Figure 2. A simple transactional datatype implementation.
TBox<T> provides transaction-safe concurrent access to an
object of type T.

vided by the STO core. TWrapped<T> provides atomic access
to an underlying object and TVersion is STO’s version num-
ber class. The item.read(value_, version_) call atomically
reads a wrapped value and version number, records the ver-
sion number in item, and returns the value.

3.5 False conflicts and optimistic predicates
False conflicts arise when operations that don’t conflict in
semantic terms—that is, operations that commute—conflict
in concrete terms on a shared version number. False conflicts
cause unnecessary aborts, waiting, and wasted work, so for
good performance, STO datatypes should avoid them.

To keep our discussion concrete, we consider a transac-
tional counter with increment, decrement, and test opera-
tions, where increment and decrement return nothing and
test returns whether the counter’s value is greater than zero.
In a naive implementation, all operations read the prior value
of the counter, so all operations conflict.

An implementation should avoid creating conflict depen-
dencies that aren’t required by the datatype specification. As
mentioned, many datatypes divide into logical segments of

state, and using a version number per segment naturally re-
duces dependencies. But dependencies can sometimes be re-
duced even in datatypes with only one logical segment. For
example, since our counter’s increment and decrement op-
erations return nothing, they don’t expose the prior state of
the counter. There is no semantic need for these operations’
implementations to observe that prior state. Instead, they can
record an accumulated counter delta that is applied at com-
mit time. Update transactions still serialize on the counter’s
lock, but since they no longer observe counter state, concur-
rent updates no longer cause aborts.

Multiple version numbers can help even in datatypes
that lack an obvious segment division. For instance, test

commutes with any sequence of updates that don’t change
whether the counter is positive. If the counter infrequently
crosses zero, a version number for zero crossings can reduce
false conflicts. Test reads this version number; increment

and decrement update the main version number at each
commit, but update the zero-crossing version number only
when the counter’s value crosses zero. Unfortunately, this
approach doesn’t handle transactions that update the counter
before testing it; for such transactions, test must fall back
to the main version number.

STO’s most advanced mechanism for reducing false con-
flicts is a new feature we call optimistic transactional pred-
icates. Somewhat like predicate locks in databases [15],
STO’s predicates are a general methodology for avoiding
false conflicts and detecting true ones.

To use a predicate, a datatype records in a TItem a pred-
icate expression indicating conditions under which commit-
ting the transaction is acceptable. This expression is stored
in a datatype-specific way. At commit time, STO calls the
datatype’s check_predicate callback to verify that the com-
mit condition still holds; the transaction aborts if this call-
back fails.

In our counter, test can track a predicate range [l,h],
where the counter’s check_predicate succeeds if and only
if the commit-time counter value lies between l and h. When
called on a positive counter, test will record the predicate
[1,∞]. But predicates also handle more complex sequences
of operations. In a transaction in which test returns false,
increment is called 10 times, and finally test returns true,
the predicate [−9,0] records a necessary and sufficient com-
mit condition.

In optimistic commit protocols like STO’s, the verifica-
tion phase (Phase 2) must be able to detect all concurrent
updates, including locks and update sequences that mod-
ify object state before returning it to an earlier value. This
means that Phase 2 verification must consider version num-
bers; evaluating arbitrary predicate expressions there would
not ensure atomicity in multi-operation transactions. There-
fore, STO upgrades its predicates to version numbers during
Phase 1, reducing predicate checking to conventional OCC
read validation. Although false conflicts can still occur on

the upgraded version numbers, they are limited in scope to
the commit protocol: concurrent updates during transaction
execution are ignored.

To implement the upgrade process, STO calls each predi-
cate TItem’s check_predicate callback during Phase 1 of the
commit protocol. This callback first performs an atomic read
of the relevant object state and any version number(s) that
cover that state. (A set of version numbers “cover” state if
any change in the state is accompanied by a change in at
least one of the version numbers.) It then checks the predi-
cate using this state, returning false and aborting the trans-
action if the predicate no longer holds. Finally, the callback
adds the covering version number(s) to the TItem and returns
true. Once all predicates are verified, Phase 2 begins, and the
upgraded version numbers are validated.

Predicates have higher overhead than version numbers
due to the extra computation they add to the commit proto-
col. Our datatypes mostly use extra version numbers to avoid
false conflicts, since this is slightly faster in low-conflict situ-
ations; our red-black tree, for example, has two version num-
bers per node, one for updates to data and one for updates
to tree structure. Nevertheless, predicates are powerful, gen-
eral, and can have high performance impact, as we’ll see.
Predicates also broaden the range of commutative operations
STO can support.

3.6 Opacity
A transactional memory has the opacity property when user
code never observes a transactionally inconsistent state [21,
35]. These states are dangerous because they can cause ir-
recoverable failures in user code, such as invalid pointer
dereferences, infinite loops, and hardware traps like divide-
by-zero. TM is easier to use when users need not consider
such states. Opacity eliminates these states by aborting trans-
actions as soon as they observe an inconsistency that would
cause a later commit attempt to fail.

STO provides opacity using the TL2 algorithm [12]. TL2-
style opacity relies on a version clock: committed transac-
tions’ version numbers must increase monotonically. STO
uses the original “GV4” version clock for simplicity, but any
version clock would work (and many would scale better).
On starting a new transaction, STO reads the global ver-
sion clock and records this as the transaction’s local version
bound. On observing transactional state, STO compares the
corresponding version number with the bound. If the bound
is smaller, the read is unsafe: the corresponding transaction
executed in parallel with the current transaction, and thus
might have invalidated previously-read state.

In TL2, unsafe version numbers always cause the trans-
action to abort. This can cause false aborts, however, and we
observed better overall performance using revalidation [9,
42]. On observing an unsafe version number, STO reloads
the transaction’s version bound, then verifies all previously-
read version numbers and predicates by calling the corre-
sponding check and check_predicate methods; the transac-

tion aborts only if one of these checks fails. (When called
during an opacity check, it’s safe for check_predicate to
merely check a predicate, rather than upgrade it to a version
number.) Revalidation improved our performance by an av-
erage of 14% in high-contention STAMP benchmarks, with
no adverse effect at low contention.

Opacity checks must be performed on every observation
of shared state. STO simplifies this task with methods like
TItem::read, which combines an atomic read of shared state
with opacity checking and tracking set management.

As a result of opacity, STO, like TL2, can commit read-
only transactions without running the commit protocol.
When an opaque transaction reaches the commit point, all
observations saw a consistent state, so for transactions that
only contained observations, committing is definitely safe.
Unlike TL2, however, STO always records reads in its track-
ing set. This allows revalidation and isn’t a large burden
since STO read sets are relatively small.

As we’ll see, some useful datatype implementation strate-
gies modify shared structures before commit. This interacts
poorly with global-version-clock opacity, since some ver-
sion numbers are updated before the commit-time transac-
tion ID is set. Datatype implementations can either allocate
separate version clock values for such updates, or they can
mark the updated version numbers as “unordered” using a
reserved bit. On encountering an unordered version number,
STO performs a full revalidation. Datatypes may also define
their own version types that aren’t computed from the global
clock; this helped us port preexisting concurrent code. Such
values are also unordered and cause full revalidation.

Although predicates’ covering version numbers aren’t ac-
tually stored in the tracking set until the commit protocol
begins, predicate evaluation nevertheless observes state, and
whenever a predicate is checked, the corresponding version
numbers must be checked for opacity. If an unordered ver-
sion number is accessed in check_predicate, the containing
transaction may spontaneously abort rather than risk observ-
ing inconsistent state.

STO’s version of TL2 opacity is relatively fast, but its
additional checks, and contention on the global version
clock, introduce overhead. Some applications might pre-
fer to avoid this overhead since they are written in a style
that does not require opacity. Databases, for example, run
user-defined code, and therefore already guard against infi-
nite loops, traps, and so forth. For these applications, STO
offers a mode in which opacity is turned off: opacity checks
don’t occur during transaction execution, and the global ver-
sion clock is not used. A program whose transactions are
safe, meaning a program whose transactions always abort or
commit without invoking undefined behavior, crashing, or
looping, may use the non-opaque mode in confidence. The
original Silo database does not provide opacity, so we use
the non-opaque mode for our Silo benchmark. We manually
verified this was safe.

3.7 Implementation and discussion
Our implementation of STO has about 2,900 lines of C++
code in the core system, 6,600 lines in our datatypes, and
many more lines of tests.

TItem efficiency was our major performance concern. The
Sto::item function uses a per-transaction hash table to look
up an item by owner and key, and O(1) item access time
is important for performance. Clearing the hash table after
every transaction was expensive, so we designed a hash table
that only needs clearing every several hundred transactions
(depending on tracking set size). TItems are small, fixed-
size objects; each one occupies four words (32 bytes). We
considered alternate designs, including one where datatype
implementers created subclasses of TItem. These designs
avoided some pitfalls, such as type-safety issues with write
values, but due to additional overhead, they performed badly.

Any state reachable from a TItem must stay in memory
until the containing transaction commits or aborts. We en-
sure this by managing data structure memory using Read-
Copy-Update (RCU) [19, 38] and making each transaction
a read-side critical section. Thus, if transaction A observes
a list node that transaction B deletes, then A’s check method
can safely access the node whether or not B has committed,
since deleted nodes aren’t freed until later.

Bounded spinning can cause false aborts, since a transac-
tion waiting on an object locked by another transaction can
abort even when there is no deadlock. Some datatype locks,
such as those merely used to coordinate updates (and not
used to detect conflicts), benefit from higher bounds.

Global-version-clock opacity is vulnerable to problems if
version numbers wrap around, though this is rare given 64-
bit version numbers.

The commit protocol calls lock and install callbacks in
the order the corresponding TItems were added, and unlock

and cleanup callbacks in reverse order. This makes it easier
to communicate information from callback to callback, since
one callback can set up object state for a later one to use.

4. Datatypes
We now turn to STO’s transactional datatypes. We look first
at how STO datatypes are designed in general, then describe
those datatypes STO currently supports.

4.1 Methodology
This section describes methodological considerations, in-
cluding how datatype specifications affect datatype imple-
mentation, several design patterns we have developed to han-
dle common challenges, and some other issues that arise
when implementing these types.

Specification A datatype’s specification is crucial in deter-
mining how much potential concurrency it can support. In
some cases, small changes to the specification can dramati-
cally change the conflict graph [8]. If a hash table’s insert

method returns the new size of the hash table, then all inser-

tions conflict with one another; changing the method to re-
turn void allows insertions of different keys to commute. The
specification also constrains how the datatype’s internal state
can be divided into logical segments, which in turn affects
how many version numbers a datatype contains and how
many TItems its implementation will create. Programmers
reason about logical segments by considering how opera-
tions commute. This reasoning process is common to many
approaches to concurrent datatypes; for instance, the design
process for a STO datatype’s version numbers and TItems
resembles the design process for a boosted data structure’s
abstract lock table [25].

Inserted elements Inserting a new item into a data struc-
ture is often a two-step process: the structure is searched
for the right place to insert the item, and then the item is
installed. Unfortunately, because of optimistic concurrency
control, a naive STO datatype implementation might per-
form the expensive search step more than once per insert. In
the transaction body, code would search for the key, but then
record the new value in a TItem write value. During the com-
mit protocol, the check callback would verify the absence of
the key, and the install callback would again search for the
insertion point to install the new value. This repeated search-
ing can be expensive, particularly in O(logN) data structures
like trees.

Many of our datatypes instead insert new items eagerly,
during transaction execution. To preserve transactional cor-
rectness, these new items are marked as poisoned: any other
transaction that observes the new item will abort immedi-
ately. This is an example of the direct update strategy for
transaction execution [22], leading overall to STO using a
hybrid strategy. Use of direct updates reduces lookups to the
minimum of one per insertion, an important property for per-
formance [48]. It also means transactional insertions need
not be verified during the commit protocol: no other trans-
action can create a conflict with the inserted item since any
transaction observing that item will abort.

Absent elements Absent elements require special care for
transactional correctness. For instance, if a hash table’s
get(K) operation indicates that K is not in the table, a ver-
sion number is required to verify this absence at commit
time. Sensible storage locations for such version numbers
vary from datatype to datatype. Our hash table, for example,
uses a per-bucket version number that is incremented on in-
sertion; our binary search tree uses version numbers on the
absent node’s possible parent(s). As a result, many of our
transactional datatypes support several classes of TItem. Our
hash table has TItems corresponding to present elements,
to bucket versions, and to the hash table’s size. These item
classes are distinguished by using different portions of the
key space, or by user flags on the items themselves.

The version numbers useful for detecting changes in ab-
sent elements have also proven suitable for validating range
queries.

Read-my-writes Transactional correctness also requires
that a transaction be able to read its own writes. Datatypes
must check each TItem for a prior write and return the cor-
responding values if found (see Figure 2 for an example).
They must also support combinations such as “a transac-
tion inserts an item, then deletes it, then re-inserts it with a
different value.” When a data structure supports both direct
updates (e.g., for inserted elements) and deferred updates,
this creates complex interactions between direct updates and
reads. For instance, consider a B+ tree transaction that first
scans a key range, then inserts a key into that range. The
direct-update insertion may change the versions observed
by the range scan, but the transaction should still commit.
Our datatypes handle this by updating the relevant items’
version numbers when this occurs.

Correctness STO’s correctness depends on datatype im-
plementations following several rules. These include: (1) All
accesses to shared state use version numbers: if transaction
A makes a modification that transaction B observes, then
some version number modified by A must have been read
by B before B commits. (2) No two transactions can con-
currently hold a lock on the same segment of state. (3) A
check_predicate method must fail if the corresponding state
has been modified in a semantically meaningful way. (4) A
check method must fail if the corresponding segment is con-
currently locked by another transaction or its version number
has changed. (5) Data structure modifications must be invis-
ible to other transactions before install is called. (6) Meth-
ods that acquire data structure locks must avoid deadlocks.
Short-term spinlocks that are always acquired and released
in the same method are generally fine; bounded spinning also
works well.

Within these constraints, datatypes can implement their
commit callbacks however they like.

Composition STO transactional objects can be composed.
For instance, a transactional array can have transactional lists
as elements. This works best given a layer of pointer indi-
rection (array elements are pointers to transactional lists),
since most transactional objects do not support operations
like copying and assignment. Other composition strategies
are future work.

Non-transactional operations Though transactional oper-
ations must be executed inside a transaction, datatypes are
free to provide operations that execute outside of any trans-
action. Many of our datatypes do so, to support, for exam-
ple, fast bulk load. Datatypes can also provide singleton con-
current operations that run outside of any transaction. This
avoids transaction overhead and thus can perform somewhat
faster, but such operations must perform sufficient version
number updates to preserve the correctness of any concur-
rent transactions.

4.2 List of types
STO provides the following types in addition to TBox<T>.

TCounter. Like the counter discussed in §3.5, the library
counter supports transactional increment, decrement, and
test operations. Range-based predicates are used to reduce
false conflicts: the C++ code ctr > 2 observes a predicate
on whether the counter’s value is greater than 2, whereas a
direct observation, such as int i = ctr, observes a specific
counter value.

TArray<T, N>. This fixed-size array type offers transac-
tional access to N indexed elements; the expression a[i]

transactionally reads or writes element i as appropriate.
Transactional iterators are also supported. For example, a
transactional find of an element in an array can be imple-
mented as follows:

extern TArray<T> arr;
TRANSACTION { ...

auto it = std::find(arr.begin(), arr.end(), x);
... } RETRY(true);

TArray’s iterators follow the standard C++ iterator require-
ments, but are safe for use in transactions. Dereferencing an
iterator acts like a read or write operation; for example, *it
= 3 becomes a transactional write to an element, and z = *it

becomes a transactional read.
TArray<T, N> x behaves much like an array of transac-

tional boxes TBox<T> x[N], but there is a difference in over-
head: the array of boxes contains N virtual function tables,
one per box, while the array requires just one table.

TVector<T>. This datatype represents a variable-sized ar-
ray. In addition to array access methods and iterators, it sup-
ports operations to change array size, including push_back,
pop_back, insert, and erase. Thus, unlike in TArray, TVector’s
size is a separately-observable logical segment. The under-
lying data is stored on the heap.

The standard C++ vector’s push_back operation does not
observe the vector’s size, so two push_back operations in dif-
ferent transactions commute. Our implementation preserves
this property: transactions that push elements onto a vec-
tor without observing the vector’s size do not conflict. Fur-
thermore, operations that access the size, such as iterator
comparisons, size, and empty, use predicates to reduce false
conflicts and reflect operation commutativity. The compari-
son v.begin() == v.end() merely observes whether v’s size
is zero; the comparison v.begin() + 3 < v.end() - 2 ob-
serves whether v’s size is greater than five.

TList<T>. This datatype implements a typed singly-linked
list with a separate size component. Its main operations are
insert, erase, find, and size. All updates to the list are se-
rialized by a single lock (a potential area for improvement),
but reads are lock-free thanks to RCU and version validation,
and updates to different items commute. TItems for lists cor-
respond to list nodes, with a separate TItem representing the
size.

TListSet<T>. This extension of TList implements a set
(without duplicates); the type T must support equality, and
the transactional insert method fails if the element is al-

ready present. Thanks to our insertion technique (direct up-
dates), transactional insertions don’t need commit-time ver-
ification.

TQueue<T>. Our transactional queue supports two opera-
tions, push (add element to tail) and pop (remove element
from head). Like the push_back method in TVector, push

does not actually observe the queue’s state, so push-only
transactions do not conflict.

TPriorityQueue<T>. Our transactional priority queue sup-
ports operations push (add element), top (return the top pri-
ority), and pop (remove a nondeterministically-chosen ele-
ment with top priority). Our implementation is based on a
concurrent max-heap stored in a C++ standard vector. All
updates serialize at commit time on a coarse-grained lock,
but their specifications allow many conflicts to be avoided:
two pushes never conflict; two pops always conflict; and a
push and a pop conflict only when the push adds a high-
priority value. Our implementation takes advantage of this
to substantial performance benefit (see §5.5). It also uses
poisoning to encourage early aborts of conflicting transac-
tions. For instance, a popped element is poisoned, causing
concurrent popping transactions to abort. If the poisoning
transaction aborts, the element’s original version number is
restored.

THashtable<K, V>. STO supports three map-like data
structures, hash tables, binary search trees, and Masstree,
a B+-like tree. The first of these, THashtable, is a concurrent
hash table with chaining; it supports get, insert, put, and
remove operations. Transactional inserts again use direct up-
date; on commit, they update both the inserted element’s ver-
sion number and the version number on the corresponding
bucket. When an element is found, the get method observes
that element’s version number; when not found, it observes
the containing bucket’s version number, ensuring that a later
insert will abort the transaction. Removes are logically per-
formed at commit time by marking the item as deleted (other
transactions treat deleted items as absent). The actual unlink-
ing, which requires a traversal, occurs during cleanup, after
transaction locks are released.

TRBTree<K, V>. This datatype implements an ordered map
using a binary red-black tree, and again supports get, insert,
put, and remove operations. TRBTree supports both element
version numbers, which are updated when tree contents
change, and node version numbers, which are updated when
tree structure changes, such as through nearby insertion or
rotation. Element version numbers are used to validate suc-
cessful gets and modifications, while node version numbers
are used to validate unsuccessful gets (absent records). An
unsuccessful get observes up to two version numbers, one
for the node ordered immediately before the missing key and
one for the node ordered immediately after it. If the missing
key is inserted, at least one of the corresponding structural
version numbers will change, even if the tree rebalances in
the meantime. Transactional inserts again happen directly.

0 5 10 15 20 25
Threads

0

5

10

15

20

Sp
ee

du
p

50 ops
10 ops
10 ops, no opacity

Figure 3. STO’s scalability at low contention levels.

TMasstree. Masstree [36] is a high-performance concur-
rent B+ tree-like map data structure for key–value storage.
TMasstree provides transactional access to a Masstree, with
the same operations as THashtable plus a range query oper-
ation. Its TItems correspond to the values stored in the tree
and, to support absent elements and range queries, tree leaf
nodes. Only very small changes were required in Masstree
to support transactional operation. Specifically, we changed
Masstree to expose the previous version numbers of any leaf
nodes that split as a result of an insertion. TMasstree uses
this to update version numbers for prior range queries, as
described in §3.7.

TGeneric. Finally, the TGeneric type implements an un-
typed STM: its install method makes changes to arbitrary
words of memory. TGeneric both shows the generality of our
system and is critical for supporting the STAMP benchmarks
(in STAMP applications, some transactional accesses hap-
pen outside of any datatype). TGeneric stores version num-
bers by hashing memory addresses into a fixed-size array,
while associating write values directly with destination ad-
dresses.

5. Evaluation
This section evaluates STO on microbenchmarks to demon-
strate its scalability and the overhead of opacity; compares
STO to traditional STM and transactional boosting using the
STAMP transactional benchmark suite; and shows that STO
can outperform a transaction system purpose-built for a large
application by comparing it to Silo, a fast main-memory
database.

Our experiments were run on a machine with two 6-
core Intel Xeon X5690 processors clocked at 3.47GHz. The
processors are hyperthread-enabled so there are 24 logical
cores available. The machine has 100GB of DRAM in total,
and runs 64-bit Linux 3.2.0. We compile STO with g++-
5.3. In all graphs, we report the median of 5 consecutive
runs, with the minimum and maximum shown as error bars
(though often the error bars are too small to see).

intruder: -a10 -l2048 -n10000 -s1
genome: -g16384 -s64 -n16777216
kmeans: -m160 -n160 -t0.001 -i inputs/random-n65536-d32-c16.txt
labyrinth: -i inputs/random-x512-y512-z7-n512.txt
vacation: -n2 -q90 -u98 -r1048576 -t4194304
vacation-hi: -n4 -q1 -u90 -r184857 -t12194304
bayes: -v32 -r4096 -n10 -p40 -i2 -e9 -s1

Figure 4. Parameters used for STAMP benchmarks.

5.1 Microbenchmarks
We first evaluate STO’s overhead and scalability limitations
using microbenchmarks. Our test code performs transactions
that read and increment random elements in a transactional
array of 1 million integers. We measure both small (10-
operation) and medium (50-operation) transactions; at this
scale, contention is low (the abort rate is less than 1% even
at 24 cores). In each transaction, half the operations are reads
and half increments (so every operation reads an array index,
with half of them then writing the same index). Arrays have
particularly lean implementations in STO, so most of the
overhead we see will come from the STO core shared by
all datatypes.

Figure 3 shows the results. 50-operation transactions on
STO scale well. Though scalability is not perfectly linear
at larger core counts, much of the performance drop is due
to memory accesses that cross the 12-core socket boundary.
10-operation transactions scale less well. This is due to the
non-scalable global version clock STO uses to support opac-
ity; with opacity disabled, 10-operation transactions scale al-
most exactly like 50-operation transactions. Disabling opac-
ity has no noticeable performance impact on 50-operation
transactions. These transactions take additional CPU time to
execute, which reduces commits, and version clock updates,
to a frequency well-supported by our hardware.

We also measured transactions accessing between 1 and
512 array elements with opacity disabled. Scalability is inde-
pendent of size—different sizes’ scaling curves are similar.
Performance is not independent of size, however, since some
per-transaction overheads are amortized at larger sizes. 128-
item transactions commit 1.54x more items per second than
1-item transactions.

5.2 Typed transactions: STAMP
We now test our hypothesis that STO can outperform a
conventional STM using STAMP, a transactional memory
benchmark suite [39]. STAMP has been widely used to eval-
uate hardware and software transactional memories; it was
designed for a conventional STM, and ships with a variant
of TL2. Its component benchmarks model different paral-
lel coding patterns. STAMP makes heavy use of datatypes
such as lists, queues, and maps whose implementations call
out to a word-based STM. We ported STAMP-0.9.10 to
STO by adding STAMP-compatible interfaces to our trans-
actional datatypes. Most STAMP benchmarks also contain
some transactional accesses to other memory words, not part
of any datatype; for those, we used STO’s TGeneric imple-

intruder genome kmeans labyrinth vacation vacation-hi bayes
0

1

2

3

4

5

6

Sp
ee

du
p

ov
er

 se
qu

en
tia

l

4 cores

TL2 STO Boosting STO/predicates

intruder genome kmeans labyrinth vacation vacation-hi bayes
0

2

4

6

8

10

12

Sp
ee

du
p

ov
er

 se
qu

en
tia

l

16 cores

Figure 5. STAMP results: speedup on 4 and 16 cores over
sequential code. Higher bars are better.

mentation of word-based STM. We modified the suggested
parameters for STAMP to ensure our workloads scaled to
high core counts. At low core counts, we observe results with
these parameters similar to those reported in the STAMP pa-
per. Figure 4 gives our parameters.

Figure 5 shows the results, at 4 and 16 cores, for six
STAMP benchmarks (two others weren’t suitable to port).
Each bar shows the speedup obtained over STAMP’s single-
core version of the benchmark. The “Boosting” and “STO/
predicates” results are discussed in the following sections.
Some benchmarks exhibit superlinear speedup at 4 cores;
reasons include benchmark nondeterminism (bayes [43,
44]), increased aggregate cache size (the cache miss rate
in genome at 4 cores is 0.72x the 1-core value), and differ-
ent datatype implementations (we follow STAMP’s designs
closely, but not religiously).

In this wide range of workloads, contention levels, and
data structures, STO’s speedup over sequential code always
beats TL2’s, often substantially. STO improves on TL2’s
speedup most significantly on the intruder benchmark. At 16
cores, STO’s speedup is 14.6x higher than TL2’s. Intruder
uses list-sets heavily, and in word-based STMs, these sets
add many extraneous words to tracking sets, such as for
“next” pointers; the largest intruder transaction in TL2 has
40x more items than the largest intruder transaction in STO.

STO’s benefits come from taking advantage of datatype
semantics. We confirmed this by porting STAMP to use ex-
clusively STO’s TGeneric. The results were roughly compa-
rable with TL2 on most benchmarks. An interesting excep-
tion was labyrinth, where at 16 cores, TGeneric outperforms

TL2 by 1.39x. This is due to our use of revalidation for opac-
ity; in TL2, labyrinth has a high false abort rate.

We also measured SwissTM on these parameters [14],
though using an earlier version of STAMP. SwissTM outper-
forms TL2, sometimes substantially, but STO outperforms
SwissTM (by 1.1x–2.7x at 16 cores). Much of the benefit of
SwissTM appears to come from its mixed-invalidation con-
flict detection scheme, which combines aspects of optimistic
and pessimistic schemes. For instance, on vacation, Swiss-
TM’s performance resembles that of boosting (§5.3), which
uses a pessimistic scheme; STO/predicates’ application-
defined conflict prevention (§5.4) performs much better than
either. Broader adoption of SwissTM’s mixed scheme in
STO’s datatypes might further improve STO’s performance.

5.3 Boosting
We turn to a comparison with transactional boosting [25],
another way to integrate concurrent datatypes into a trans-
actional memory. Boosting has more inherent overhead than
STO, namely lookups in a separate abstract lock table. (STO
integrates transactional concurrency control into datatype
memory layouts.) But since boosting uses 2-phase locking,
it offers advantages at high contention. OCC generally out-
performs pessimistic concurrency control when contention
is low, but high abort rates at higher contention levels can
cause its performance to collapse.

We evaluate boosting on STAMP’s vacation benchmark.
We implemented a version of boosting for generic map and
list structures, and for vacation’s application-specific reser-
vation structure. (To validate this implementation, we ran
it on the vacation parameters and core counts used by Her-
lihy and Koskinen [25]; the systems performed similarly.)
Figure 5 shows the results (the “STO/predicates” bars are
explained later). At low contention (“vacation”), boosting’s
overhead can reduce performance, and STO outperforms
it by 1.4x at 16 cores. But things change at high con-
tention. The “vacation-hi” benchmark has extremely high
contention: transactions touch just 1% of the data. TL2 per-
forms miserably. Its large read sets and unnecessary depen-
dencies lead to very high abort rates and performance just
0.03x that of sequential code. STO’s smaller read sets reduce
transactional overhead substantially; it performs roughly 30x
better than TL2, but still slower than sequential code. Boost-
ing’s pessimistic locking helps it perform roughly 2.5x better
than STO, and even to scale, though not by much (1.72x at
16 cores).

But this tradeoff is not fundamental, since STO is flex-
ible enough to support OCC, pessimistic concurrency con-
trol, and even boosting. To explore further, we created two
new datatypes. Our pessimistic hash table obtains locks dur-
ing operations and releases them in cleanup callbacks. Our
boosted STO hash table achieves transactional correctness
using a version of boosting. The boosted hash table is a
wrapper around an unmodified concurrent hash table; the
wrapper maintains an undo log and tracks abstract lock ac-

STO 12.91x
Boosting 7.02x
Boosting in STO 6.67x
Pessimistic STO 9.82x

Figure 6. Effects of pessimism and boosting on a hash
table microbenchmark. Numbers are speedup at 16 threads
relative to single-threaded STO.

quisitions using STO TItems, and its cleanup callback ap-
plies the undo log and releases locks as necessary.

We evaluate these systems with a hash table microbench-
mark. We run a series of transactions on a large hash ta-
ble with 10 million possible keys. Each transaction performs
50 operations; every operation reads a value from the table,
while 10% of the operations write a modified value back.
The benchmark has low contention, so OCC should perform
well. We measure four hash table implementations: STO’s
default optimistic hash table; boosting; the pessimistic STO
hash table; and the boosted STO hash table. Figure 6 shows
the results. STO OCC has the best speedup: the other sys-
tems’ pessimistic locking imposes overhead, for instance
to acquire read locks on read-only elements. Boosting and
boosting-in-STO perform similarly, showing that STO’s in-
terface adds little overhead. But pessimistic STO outper-
forms the boosted variants. The difference is the extra over-
head imposed by the abstract lock table inherent in boost-
ing designs: every boosted hash table operation causes two
lookups, one in the actual hash table being modified and one
in the abstract lock table.

5.4 Application-defined operations
STO users can further improve performance by implement-
ing their own transactional objects and specializing the com-
mit protocol. We evaluated several such improvements in
STAMP.

First, the kmeans benchmark performs a k-means clus-
ter analysis on an array of multidimensional points. We ini-
tially followed STAMP and implemented cluster positions
as transactional arrays, but then observed that each transac-
tional update to a point changes all of its dimensions. It was
faster to treat the point as a single object—a box containing
a point, rather than an array of independent dimensions—
since this reduced bookkeeping.

Second, the vacation benchmark models complex reser-
vations across multiple classes of travel goods (cars, hotel
rooms, flights). Each class has a price, a total count, and a
count of goods available. By default, two reservations for
the same class (e.g., two room reservations in hotel #3)
will always conflict, even though they semantically com-
mute when enough goods are available (e.g., two or more
available rooms in hotel #3).

We initially used a transactional box for each class of
goods, but observing many false conflicts, we upgraded to a
custom transactional datatype. Predicates are used to imple-

ment requirements like “reserve if a good is available,” “test
if a good is available,” and “cancel an outstanding reserva-
tion if one exists,” avoiding many false conflicts when con-
current transactions access the same class. Predicating the
class-of-goods datatype added about 80 lines of code. The
“STO/predicates” line in Figure 5 shows the results. Under
low contention, STO/predicates performs similarly to STO.
Under high contention, however, application-specific con-
flict detection shines. STO/predicates preserves a relatively
low abort rate, and at 16 cores, it outperforms STO by 4.3x
and boosting by 1.8x.

5.5 Datatype design
In this section we briefly explore how our standard datatypes
benefit from STO’s ability to manage conflicts. We center on
our TVector datatype, which implements an array whose size
can change.

In our initial TVector implementation, operations such
as push_back, pop_back, and end observed the vector’s size,
leading to high conflict rates in experiments with concurrent
pushes and pops. Predicates enabled a better implementa-
tion, in which, for instance, pop_back observes only whether
the vector’s size is greater than 0, and an iterator comparison
like v.end() - v.begin() < 5 observes whether the size is
less than 5. The resulting reduction in conflicts can greatly
improve performance. We ran a microbenchmark consist-
ing of randomly-chosen 4-operation transactions; each op-
eration is either a size comparison, a push_back operation, a
pop_back operation, or a find operation using iterators. At
16 cores, our predicated TVector implementation has 1.5x
higher transaction throughput than the non-predicated im-
plementation.

Second, we turn to standard algorithms. C++ offers a pri-
ority queue container (std::priority_queue) that adapts any
vector-like datatype into a max-heap-based priority queue.
TVector is suitable for this adapter, so std::priority_queue<X,

TVector<X>> is a correct transactional priority queue. This
ease of programming is an advantage of the STO imple-
mentation style. Unfortunately, the adapter implementation
incurs high levels of conflict, since std::priority_queue’s
heap algorithms observe much of the vector’s internal state.
From the vector’s point of view, these observations cause
true conflicts: it is only when considered relative to the pri-
ority queue’s specification that the conflicts are false. Our
purpose-built priority queue avoids these false conflicts. The
implementation cost is several hundred lines of code, but the
performance benefits are substantial. We ran a microbench-
mark in which 75% of transactions push one random value
onto a shared priority queue and the other 25% pop its top
three values. At 16 cores, the specialized priority queue com-
mits 2.3x more transactions per second than the adapter.

5.6 Silo
Finally, we show that despite its generality, STO can out-
perform a transaction implementation purpose-built for a

1 thread 4 threads 8 threads 16 threads 24 threads
0

200

400

600

800

1000

1200

Tx
ns

 p
er

 se
co

nd
 (x

10
00

)

Silo
STO-Silo
STO-Hash

STO-Silo-NoR
STO-Hash-NoR

Figure 7. Results in total transactions per second for TPC-
C (standard mix) for Silo, an in-memory database built us-
ing ad-hoc concurrency, and two versions of STO-enhanced
Silo, one that uses TMasstree for all tables (STO-Silo) and
another that uses THashtable instead of TMasstree for some
tables (STO-Hash). In “STO-Silo-NoR” and “STO-Hash-
NoR”, we disable read-my-writes (Silo also disables these
features). Silo is very fast, but our STO-Silo version outper-
forms it by 1.17x and our STO-Hash version outperforms it
by 1.23x.

large application. Our comparison system is Silo, a fast
in-memory database [48]. Silo implements transactions us-
ing Masstree; it adds transaction-aware record structures,
an optimistic concurrency control-based transaction pro-
tocol, and an implementation of TPC-C, the well-known
high-performance transaction processing benchmark [47].
The speed of Silo transactions inspired our work on STO:
Silo outperforms many other in-memory databases by or-
ders of magnitude. To adapt Silo to STO, we replaced Silo’s
commit protocol and tree interface with wrappers around
STO’s TMasstree datatype, and replaced the transaction-
aware record structure with a STO variant; only the TPC-C
implementation was left unchanged.

We measure Silo and STO-Silo on TPC-C on 24 cores.
Our experiments run for 30 seconds; Silo’s logging and per-
sistence support is disabled (so our results correspond to
“MemSilo” in Tu et al. [48]), and STO’s opacity support is
disabled. Figure 7 shows the results. (Though TPC-C per-
formance is often measured as New Order transactions per
minute, the figure follows Silo and reports total transactions
per second for the standard TPC-C mix.) STO-Silo performs
well; in fact, at 24 cores, it has 1.17x higher throughput than
Silo.

STO-based Silo is both simpler and more general than
the original. The STO core plus TMasstree is less than 3,000
lines of C++ code, while the corresponding part of Silo is
more than 7,000 lines long. Furthermore, whereas Silo’s im-
plementation is deeply enmeshed with Masstree, STO makes
it easy for STO-Silo to try different datatypes. Some of the
TPC-C benchmark’s tables are never used in range queries,
and thus can be implemented as hash tables, avoiding the
overhead of O(logN) tree lookups. The STO-Hash system

in Figure 7 updates STO-Silo to use THashtable for five of
its tables. STO made this a simple change. STO-Hash per-
forms even better, with 1.23x Silo’s throughput at 24 cores.

Moreover, all these comparisons are somewhat unfair to
STO. Silo’s transaction system doesn’t support reading an
item that was written by the same transaction (TPC-C does
not require this). The NoR variants in Figure 7 modify STO
in a similar way; these variants perform even faster. Al-
though we confirmed that opacity is not necessary for the
TPC-C benchmark, we also ran the benchmark with STO’s
opacity enabled, and observed only 5% overhead.

Our original implementation of STO was only slightly
faster than Silo. However, we found that STO’s performance
on TPC-C improved over time, as we optimized STO for
other, unrelated benchmarks. In particular, our hash table to
provide O(1) lookup of TItems, and our choice not to sort
the write set, gave a nearly 10% combined improvement on
TPC-C. Given more effort, a purpose-built system for Silo
transactions could likely outperform our general system.
Our results show, however, that such an effort might not
be worthwhile. STO’s generality has low cost, and further
improvements on STO’s transactional core would benefit not
only STO-Silo, but also other programs.

6. Conclusions
STO is a new software transactional memory that derives
power from abstraction. Rather than concrete reads and
writes to memory words, STO manages abstract read and
write operations on transactional datatypes. It then dele-
gates much of its commit protocol to datatype callbacks.
STO datatypes can implement their own concurrency control
mechanisms, thereby reducing false conflicts and improving
scalability. They can also decouple their internal concur-
rency control from transaction processing. New commit pro-
tocol features, including optimistic transactional predicates,
allow datatypes to capture much of the concurrency latent
in their specifications. STO’s transactional core is highly
efficient despite its abstract nature. Our large datatype li-
brary demonstrates a range of implementation techniques,
and proves STO to be an effective framework for transac-
tional datatype programming. STO outperforms both TL2,
a conventional software transactional memory, and trans-
actional boosting. More significantly, it outperforms Silo,
a purpose-built transaction system, on the TPC-C database
benchmark.

In the future, we hope to apply STO to more concurrent
programs and to explore extensions of its approach to per-
sistent and distributed transactions. We also hope to imple-
ment improvements including more scalable version clocks,
mixed invalidation, and more mechanisms for reducing false
conflicts, such as transactional futures [41].

STO is available at github.com/nathanielherman/sto.

Acknowledgements
We thank our shepherd, Madan Musuvathi, and our Eurosys
anonymous reviewers for their helpful comments. We are
also grateful to Min Zhang (MIT) for implementing an initial
version of STO’s application-specific concurrency control
for vacation. Thanks to the Harvard College Research Pro-
gram for supporting some of Nathaniel Herman’s work. This
material is based upon work supported by the National Sci-
ence Foundation under Grant Nos. 1513416 and 1302359.
Eddie Kohler was partially supported by a Microsoft Re-
search New Faculty Fellowship.

References
[1] B. R. Badrinath and K. Ramamritham. Semantics-based con-

currency control: Beyond commutativity. ACM Transactions
on Database Systems, 17(1):163–199, Mar. 1992.

[2] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. Trans-
actional predication: High-performance concurrent sets and
maps for STM. In Proc. PODC ’10 (29th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing),
pages 6–15. ACM, 2010.

[3] J. Cachopo and A. Rito-Silva. Versioned boxes as the basis
for memory transactions. Science of Computer Programming,
63:172–185, Dec. 2006.

[4] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and
M. Herlihy. Invyswell: A hybrid transactional memory for
Haswell’s Restricted Transactional Memory. In Proc. PACT
’14 (23rd International Conference on Parallel Architectures
and Compilation), pages 187–200. ACM, 2014.

[5] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis,
and K. Olukotun. Transactional collection classes. In Proc.
PPoPP ’07 (12th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming), pages 56–67. ACM,
2007.

[6] F. M. Carvalho and J. Cachopo. STM with transparent API
considered harmful. In Proc. ICA3PP ’11 (11th International
Conference on Algorithms and Architectures for Parallel Pro-
cessing), LNCS 7016, Melbourne, Australia, Oct. . Springer.

[7] C. Cas̨caval, C. Blundell, M. Michael, H. W. Cain, P. Wu,
S. Chiras, and S. Chatterjee. Software transactional memory:
Why is it only a research toy? Communications of the ACM,
51(11), Nov. 2008.

[8] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris,
and E. Kohler. The scalable commutativity rule: Designing
scalable software for multicore processors. In Proc. SOSP
’13 (24th ACM Symposium on Operating Systems Principles),
Farmington, PA, Nov. 2013.

[9] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Stream-
lining STM by abolishing ownership records. In Proc. PPoPP
’10 (15th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming), pages 67–78. ACM, 2010.

[10] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L.
Scott, and M. F. Spear. Hybrid NOrec: A case study in the
effectiveness of best effort hardware transactional memory.

https://github.com/nathanielherman/sto

SIGARCH Computer Architecture News, 39(1):39–52, Mar.
2011.

[11] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. In Proc. ASP-
LOS ’06 (12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems),
pages 336–346. ACM, 2006.

[12] D. Dice, O. Shalev, and N. Shavit. Transactional Locking
II. In Proc. DISC ’06 (20th International Conference on
Distributed Computing), Stockholm, Sept. 2006.

[13] A. Dragojević and T. Harris. STM in the small: Trading
generality for performance in software transactional memory.
In Proc. EuroSys’12 (7th European Conference on Computer
Systems), Bern, Switzerland, Apr. 2012.

[14] A. Dragojević, R. Guerraoui, and M. Kapałka. Stretching
transactional memory. In Proc. PLDI ’09 (ACM SIGPLAN
2009 Conference on Programming Language Design and Im-
plementation), Dublin, June 2009.

[15] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The
notions of consistency and predicate locks in a database sys-
tem. Communications of ACM, 19(11):624–633, Nov. 1976.

[16] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions.
In Proc. DISC ’09 (23rd International Conference on Dis-
tributed Computing), pages 93–107, Berlin, Heidelberg, 2009.
Springer-Verlag.

[17] S. M. Fernandes and J. Cachopo. A scalable and efficient
commit algorithm for the JVSTM. In Proc. TRANSACT 2010
(5th ACM SIGPLAN Workshop on Transactional Computing),
Paris, Apr. 2010.

[18] S. M. Fernandes and J. Cachopo. Lock-free and scalable
multi-version software transactional memory. In Proc. PPoPP
’11 (16th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming), San Antonio, TX,
Feb. 2011.

[19] K. Fraser. Practical Lock-freedom. PhD thesis, University of
Cambridge, 2004.

[20] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav.
Automatic scalable atomicity via semantic locking. In Proc.
PPoPP ’15 (20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming), pages 31–41. ACM,
2015.

[21] R. Guerraoui and M. Kapalka. On the correctness of trans-
actional memory. In Proc. PPoPP ’08 (13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming), pages 175–184. ACM, 2008.

[22] T. Harris, J. Larus, and R. Rajwar. Transactional Memory.
Morgan and Claypool Publishers, 2nd edition, 2010.

[23] A. Hassan, R. Palmieri, and B. Ravindran. Optimistic trans-
actional boosting. In Proc. PPoPP ’14 (19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming), pages 387–388, Orlando, FL, 2014. ACM.

[24] A. Hassan, R. Palmieri, and B. Ravindran. On developing op-
timistic transactional lazy set. In Proc. OPODIS ’14 (18th In-
ternational Conference on Principles of Distributed Systems),
LNCS 8878, pages 437–452, Cortina d’Ampezzo, Italy, 2014.
Springer-Verlag.

[25] M. Herlihy and E. Koskinen. Transactional boosting: A
methodology for highly-concurrent transactional objects. In
Proc. PPoPP ’08 (13th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming), pages 207–216.
ACM, 2008.

[26] M. Herlihy and J. E. B. Moss. Transactional memory: Archi-
tectural support for lock-free data structures. In Proc. ISCA
’93 (20th Annual International Symposium on Computer Ar-
chitecture), pages 289–300. ACM Press, 1993.

[27] M. Herlihy and N. Shavit. The art of multiprocessor program-
ming. Morgan Kaufmann, 2008.

[28] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Dynamic-
sized lock-free data structures. In Proc. PODC ’02 (21st
Symposium on Principles of Distributed Computing), pages
131–131. ACM, 2002.

[29] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III.
Software transactional memory for dynamic-sized data struc-
tures. In Proc. PODC ’03 (22nd Annual Symposium on Prin-
ciples of Distributed Computing), pages 92–101. ACM, 2003.

[30] M. P. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Pro-
graming Languages and Systems, 12(3):463–492, July 1990.

[31] H. F. Korth. Locking primitives in a database system. Journal
of ACM, 30(1):55–79, Jan. 1983.

[32] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew. Optimistic parallelism requires ab-
stractions. In Proc. PLDI ’07 (ACM SIGPLAN 2007 Con-
ference on Programming Language Design and Implementa-
tion), pages 211–222, San Diego, CA, 2007. ACM.

[33] M. Kulkarni, D. Nguyen, D. Prountzos, X. Sui, and K. Pin-
gali. Exploiting the commutativity lattice. In Proc. PLDI
’11 (32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation), pages 542–555, San Jose,
CA, 2011. ACM.

[34] H.-T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database Systems
(TODS), 6(2):213–226, 1981.

[35] M. Lesani and J. Palsberg. Decomposing opacity. In Proc.
DISC ’14 (28th International Conference on Distributed Com-
puting), 2014.

[36] Y. Mao, E. Kohler, and R. Morris. Cache craftiness for fast
multicore key-value storage. In Proc. EuroSys’12 (7th Euro-
pean Conference on Computer Systems), Bern, Switzerland,
Apr. 2012.

[37] A. Matveev and N. Shavit. Reduced hardware NOrec: A safe
and scalable hybrid transactional memory. In Proc. ASPLOS
’15 (20th International Conference on Architectural Support
for Programming Languages and Operating Systems), pages
59–71, Istanbul, 2015. ACM.

[38] P. E. McKenney and J. D. Slingwine. Read-copy update:
Using execution history to solve concurrency problems. In
Proc. PDCS ’98 (10th IASTED International Conference on
Parallel and Distributed Computing and Systems), pages 509–
518, Las Vegas, NV, October 1998.

[39] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford Transactional Applications for Multi-

Processing. In Proc. IISWC ’08 (4th International Symposium
on Workload Characterization), 2008.

[40] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L.
Hudson, J. E. B. Moss, B. Saha, and T. Shpeisman. Open
nesting in software transactional memory. In Proc. PPoPP ’07
(12th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming), pages 68–78, San Jose, CA, 2007.
ACM.

[41] L. Pina and J. Cachopo. Profiling and tuning the performance
of an STM-based concurrent program. In Proc. TMC ’11
(Workshop on Transitioning to MultiCore, part of SPLASH
’11, ACM SIGPLAN Conference on Systems, Programming,
and Applications: Software for Humanity), Portland, OR, Oct.
2011.

[42] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algo-
rithm with eager validation. In Proc. DISC ’06 (20th Inter-
national Conference on Distributed Computing), pages 284–
298, Stockholm, 2006. Springer-Verlag.

[43] W. Ruan and M. Spear. Hybrid transactional memory re-
visited. In Distributed Computing, pages 215–231. Springer,
2015.

[44] W. Ruan, Y. Liu, and M. Spear. STAMP need not be consid-
ered harmful. In TRANSACT’14 (9th ACM SIGPLAN Work-
shop on Transactional Computing), 2014.

[45] P. M. Schwarz and A. Z. Spector. Synchronizing shared
abstract types. ACM Transactions on Computer Systems, 2
(3):223–250, Aug. 1984.

[46] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Proc. SSS ’11 (13th In-
ternational Conference on Stabilization, Safety, and Security
of Distributed Systems), pages 386–400, Grenoble, France,
2011. Springer-Verlag.

[47] The Transaction Processing Council. TPC-C benchmark (re-
vision 5.9.0). http://www.tpc.org/tpcc/, June 2007.

[48] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. In Proc. SOSP
’13 (24th ACM Symposium on Operating Systems Principles),
pages 18–32. ACM, 2013.

[49] W. E. Weihl. Commutativity-based concurrency control for
abstract data types. IEEE Transactions on Computing, 37(12):
1488–1505, Dec. 1988.

[50] L. Xiang and M. L. Scott. Software partitioning of hardware
transactions. In Proc. PPoPP ’15 (20th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming),
pages 76–86. ACM, 2015.

[51] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Perfor-
mance evaluation of Intel Transactional Synchronization Ex-
tensions for high-performance computing. In Proc. SC’13
(International Conference for High Performance Computing,
Networking, Storage and Analysis), Denver, CO, Nov. 2013.

[52] M. Zhang, J. Huang, M. Cao, and M. D. Bond. Low-overhead
software transactional memory with progress guarantees and
strong semantics. In Proc. PPoPP ’15 (20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming), pages 97–108. ACM, 2015.

http://www.tpc.org/tpcc/

	Introduction
	Related work
	Design
	Overview
	STO platform
	Basic commit protocol
	Example
	False conflicts and optimistic predicates
	Opacity
	Implementation and discussion

	Datatypes
	Methodology
	List of types

	Evaluation
	Microbenchmarks
	Typed transactions: STAMP
	Boosting
	Application-defined operations
	Datatype design
	Silo

	Conclusions

