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Abstract
Emerging trends in memory technologies could change how
software storage systems are built. Traditionally, software
storage systems rely on slow and block-based persistent stor-
age devices for capacity and durability, and fast but scarce
volatile memory is used as a caching layer for performance.
With storage devices not catching up with the performance
improvements in other aspects of computer systems over the
years, smart use of main memory becomes increasingly cru-
cial for performance. Much complexity has arisen from the
need to use memory more efficiently. But that trend is bound
to change with advances in memory technologies. Emerg-
ing non-volatile random access memory (NVRAM) devices
provide high-performance byte-addressable persistent stor-
age right from the memory bus, with both capacity and en-
durance surpassing today’s flash drives. Memory is going to
become cheap, abundant, and even persistent, and that fun-
damentally changes the way computer systems use memory.

Today we present two systems that adapt and extend ex-
isting software systems to make use of advanced memory
technologies. First, we look at adapting a modern state-of-
the-art concurrent in-memory data structure to be completely
NVRAM-resident. We took Masstree, a highly concurrent
in-memory key-value store designed for volatile DRAM,
and ported it to work in NVRAM with crash consistency.
We used novel shadow paging techniques at internal nodes
to avoid write-ahead logging, transforming Masstree into an
NVRAM-ready data structure with very little space and per-
formance overhead. Our NVRAM Masstree allows an in-
memory storage system to achieve high performance and
durability without slow accesses to flash or disk. Second,
we use the power of abundant or even persistent memory
to provide a powerful programming construct: in-memory
transactional snapshots of concurrent data structures. We ex-
tended a type-based software transactional memory library
STO to support snapshots for STO data types. We also im-
plemented snapshot using the new extension for one STO
data type – the linked list. STO-Snapshot supports near-
instant snapshot-taking with negligible impact on read/write
performance.

1. Introduction
Emerging trends in memory technologies have the potential
to change the way storage systems are built. Today’s storage
systems increasingly rely on efficient use of main memory
to overcome the bottleneck of slow access to flash or disk,
and much complexity has arisen in these systems as a result.
Despite shifting more data and organizing them in a more
complex manner in main memory, the way computer sys-
tems treat main memory hasn’t changed for decades. Main
memory has always been used as a scarce scratch space to
store temporary objects that are frequently accessed, and it
is assumed to be volatile in nature. Emergence of NVRAM
is bound to change all that: memory is going to be abundant,
and it can even be non-volatile.

Adapting modern systems to make use of NVRAM tech-
nology raises several challenges. The “volatility” of main
memory may seem like an undesired side-effect, but it’s ac-
tually the basis of most computer programs. Volatility grants
a program the right to “start fresh” every time it launches,
and not to worry about keeping a consistent layout of its
in-memory data before exiting. As a result, directly porting
computer programs that deal with volatile data to work in
NVRAM does not give us a durable system – they do not
treat memory as persistent and they won’t recover from fail-
ures.

Computer programs that explicitly deal with persis-
tence, e.g. a file system, are not ready to take advantage of
NVRAM technology either. These systems assume a block-
based underlying storage device, and that it can only be
reached via separate I/O buses. Some of them also assume
the storage device intrinsically supports atomic block-level
accesses. NVRAM provides none of these, so a block em-
ulation layer would be necessary for a traditional storage
system to work out-of-the-box on top of NVRAM. Studies
in [3] show that such an unnecessary emulation layer comes
with substantial cost: block-based systems, such as NTFS,
perform as much as 5x worse in RAM than a system that’s
designed to work with byte-addressable memory.

The opportunities NVRAM presents, however, are too
huge to ignore. NVRAM, like volatile DRAM, operates right
from the memory bus, saving storage systems expensive
accesses to slow I/O storage devices via a separate bus. For
the first time, persistence can be achieved by using the CPU’s
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load and store instructions, fundamentally changing the way
programs interact with storage. NVRAM is also abundant in
storage capacity, potentially making the scarcity of memory
resources a thing of the past. The abundant and persistent
memory enables new programming abstractions that present
memory as an advanced service, like a database, instead of a
scratch space.

We present systems that adapt and extend existing soft-
ware systems to make use of these advanced memory
technologies. We first adapt a highly-optimized concurrent
key-value store data structure, Masstree [11], to work in
NVRAM, such that it becomes resilient to power failures
during operations. We then extend STO [5], a fast type-
based software transactional memory library, to support in-
memory transactional snapshots of concurrent data struc-
tures. The main contributions of this work are:

• A prototype of Persistent Masstree, suitable to work in
NVRAM.

• An in-place shadow paging technique for adapting con-
current data structures to be crash-consistent in NVRAM,
without write-ahead logging or slow accesses to flash or
disk.

• An extension of the core STO interface to support trans-
actional snapshots on arbitrary data types.

• An extended STO linked list that supports transactional
snapshots.

2. Background
2.1 NVRAM and Persistence Across the Memory Bus
Emerging NVRAM technologies like memristor [17] turn
main memory into a persistent storage device. Advances
in material sciences [10] demonstrate a persistent storage
device with 10-nanosecond switching latencies and 1012-
cycle write endurance. Such devices can handle workloads in
the working-memory space just like volatile DRAM, which,
in comparison, is believed to have a similar access latency
and 1015-cycle write endurance [8].

Technologies like this sound like a dream-come-true, but
direct adaptations of on-disk or in-memory data structures
are still challenging. Data structures and software systems
designed for traditional block-based storage devices such as
disks don’t work out-of-the-box on NVRAM, because their
correct operation generally relies on atomic block-wise ac-
cess (both read and write). NVRAM doesn’t have the no-
tion of a “block” since it is byte-addressable just as regu-
lar memory, breaking the invariants that block-based stor-
age systems rely on. Volatile in-memory data structures also
don’t work out-of-the-box in NVRAM. Since NVRAM re-
tains data even if power is removed, these data structures
may become corrupt and unusable if unexpected power loss
occurs during operation.

Further more, adapting these data structures to work
with NVRAM requires careful consideration of the underly-
ing architectural artifacts such as caches. NVRAM devices

provide persistent storage themselves, but accesses to data
stored in NVRAM go through the memory subsystem and
the CPU’s cache hierarchy. All caches and buffers involved
are volatile in nature, so special flush and fence instructions
will be required to ensure persistence of certain critical op-
erations before a program can proceed. These instructions
may impede the compiler and the run time system’s ability
to optimize code, and therefore negatively impact perfor-
mance even without considering the slower access speed of
NVRAM when compared to DRAM.

2.2 NVRAM and Abundance of Storage
Apart from providing byte-addressable persistence right
from the memory bus, NVRAM also promises much higher
storage capacity when compared to today’s DRAM. HP is
on track to release the world’s first 100TB memristor de-
vice by 2018 [13], which, if achieved, could fundamentally
change the way computer programs interact with memory.
At such high capacity, NVRAM could eliminate the need of
separate I/O-bus based storage devices and let main mem-
ory become a unified hub that houses all data in the system.
Programs, on the other hand, no longer have to use memory
as a scratch space to temporarily cache data objects in use,
but to treat memory more like a traditional database service
– it should be easy for programs to retrieve information, up-
date persistent records, and perform ACID transactions all
directly within main memory.

2.3 Masstree
Masstree [11] is an in-memory key-value store optimized for
scalability. The basic internal data structures that comprise
Masstree are B-link trees. Masstree nodes have fan-out of
15, and are cache-line-aligned (256 bytes, or exactly 4 cache
lines on most x86 implementations) and pre-fetched to max-
imize performance.

Concurrency control in Masstree is heavily optimized.
Concurrent writers use fine-grained locking to arbitrate ac-
cess to tree structures, and readers are completely lock-free
by using version validations. Readers and writers rely on an
8-byte version value in each node for synchronization.

Four methods make up the core of Masstree: insert(),
update(), remove(), and split(). Many of these operations
take effect atomically by performing Read-Copy Update
(RCU) [12]. It is done by modifying part of the data structure
in an invisible buffer space, and atomically swap in a pointer
that points the reader to the updated copy. RCU is used in
Masstree for better concurrency control between reads and
writes, it also simplifies crash recovery for these operations.
Since RCU takes effect in an atomic step, a system crash
can only happen before or after the final atomic step, and in
either case the data structure remains consistent. insert(),
remove(), and update() all use RCUs and thus work well in
NVRAM, requiring only minimum modifications to ensure
correct memory ordering.
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One operation needs special attention, and that is split().
split() is actually a special case of insert(). A Masstree
node “splits” when a key is inserted to a node that is al-
ready full and has no room for the new key. After a node
splits into two, both of them become children of the previ-
ous parent node, thus resulting in another insertion at the
parent level. The insertion at the parent level can end up
with a split as well, and the process continues until no more
splits are required. Hence, split() is a complex iterative op-
eration that generates many intermediate states in the data
structures. Masstree also overwrites existing data with the
intermediate states in-place, without using RCU, and relies
on locking and other run time concurrency control to protect
the intermediate states from concurrent readers. To make this
process recoverable in NVRAM, however, run time concur-
rency control clearly won’t help. We may have to recover
a data structure left in an intermediate state back to a con-
sistent one. The current split() process makes it extremely
difficult, if not impossible, to do so.

2.4 STO Software Transactional Memory
STO [5] is a software transactional memory (STM) [16] li-
brary that uses the power of abstraction to provide fast in-
memory transactional semantics with very little overhead.
STO outperforms traditional word-based STM systems by
more than 10x under certain benchmarks while preserv-
ing the same benefits of a composable and declarative pro-
gramming interface for end users. STO even outperforms
Silo [18], a state-of-the-art in-memory database, despite be-
ing a more general and powerful system.

STO’s performance comes from abstractions. While tra-
ditional word-based STM systems view memory as untyped
words or even bytes, STO tracks the true intentions of trans-
actions by taking into account the actual data types involved.
The results are smaller read/write set sizes and many fewer
false conflicts. For example, when a binary search tree data
structure re-balances in a word-based STM, the internal
pointer flipping may invalidate and abort many transactions
that touched these pointers. In STO, however, since the re-
balancing operation doesn’t change the abstract state of the
binary search tree, it generates zero read/write transaction
set entries, and other concurrent STO transactions can pro-
ceed without aborting due to re-balancing.

In order to benefit from STO’s type-level reasoning of
transactional intentions, programs must use data types from
a library of data structures that are designed to work with
STO. The STO core library interacts with these data struc-
tures via callbacks and a read/write-set manipulation inter-
face known as the “TItem”. Each data structure internally di-
vides itself into logical segments that maps to the interface
exposed to the user, and each segment can be registered via
STO’s TItem interface to receive callback at certain stages
of a transaction. For example, in a binary search tree used
as a map, a natural choice of a logical segment would be
a node containing a key-value pair, since it maps nicely to

the key-value put/get interface the user sees. The data struc-
ture implementation will ensure that these logical segments
are registered with STO properly via the TItem interface to
indicate the intention of an on-going transaction. Once STO
determines that the transaction is safe to commit, it will issue
callbacks for every TItem in the transaction’s write-set so that
proper actions can be taken on the corresponding logical seg-
ments to finalize the commit stage. STO uses an optimistic
2-phase locking [9] commit protocol to ensure serializabil-
ity.

2.5 Simple STO Walkthrough
Details about the internals of STO are available in the STO
paper. We provide a simple walkthrough example involving
the linked list to introduce the background that’s important
to understand STO-Snapshot, our snapshot extension.

STO’s core interface includes 4 callback methods that
must be properly implemented by all conforming data struc-
tures: lock(), unlock(), check(), and install(). Each of
them also takes a TItem as an argument to identify the logical
segment that receives the callback.

In the find(K key) method of a linked list, the data type
implementation first walks the list to find the node with the
specified key, atomically observes the associated value and a
version number within the node, and registers the version in-
formation with STO by constructing a new TItem associated
with this node and passing it to STO along with the observed
version. If no node with the specified key is found, the data
type observes a list-wise version value, again passing it to
STO with a corresponding TItem. Different TItems contain
keys that differentiate between different logical segments
within the data type. STO will consolidate these TItems by
keys and store them in the read-set of the transaction.

The insert(K key, V value) method updates the linked
list. The data type implementation again first walks the list
to find the node with the specified key, and depending on the
result to either perform an update or insert a new node. In
either case, a TItem associated with the involved node (the
updated one or the newly inserted one) is created and regis-
tered with STO along with its “write value”. STO data types
normally perform lazy updates so updates are not applied
(or installed) until commit time. Such TItems with associated
write values comprise the write set of a transaction.

When a transaction tries to commit, STO will first call
lock() for all TItems in the write set to initiate the 2-phase
commit protocol. In the linked list, locking a TItem maps
naturally to locking the corresponding node. Once all locks
are acquired, STO calls check() for each TItem in the read
set of the transaction, and the implementation of the check()

method should ensure that validation only succeeds if the
observed version in the TItem is not locked and has not
changed since. After all checks succeed, the transaction is
guaranteed to commit, and STO will call install() methods
to apply all buffered changes to the data structure, and finally
call unlock() for all locked TItems.
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Note that STO doesn’t keep track of the internal details
about the data structures, such as the head/tail and all next
pointers between nodes. The data type implements proper
concurrency control independent of STO to maintain its in-
ternal structural invariants.

STO assigns each committed transaction a “transaction
ID” (TID) from a global TID space. Every time a transaction
commits, STO advances a global TID value, and assigns the
old value to the transaction as its “commit TID”. Most STO
data types, when installing updates, will stamp this commit
TID on the corresponding logical segments along with the
updates. The value is used by STO to efficiently support
opacity [4]. Our snapshot extension also uses this value and
the TID space to identify snapshots.

3. Related Work and Motivation
3.1 NVRAM for Fast Persistence
Developing software systems for NVRAM has been an ac-
tive area of research. Most of them focus on using NVRAM
as a fast persistent storage device, and adapting disk-based
systems to better utilize NVRAM.

BPFS [3] provides insight about the performance benefits
that can be gained from a byte-addressable interface versus
a clumsy block-oriented interface. It adapts the Microsoft®

NTFS file system to make all its data structures NVRAM-
resident. It proposed a technique known as “short-circuit”
shadow paging, which leverages persistent memory’s fine-
grained (8-byte) atomic update capability.

Shadow paging is a technique used by block-based stor-
age systems to maintain crash-consistency of their on-disk
data structures. It creates “shadow copies” of parts of a data
structure that require updates, until a point when a complex
multi-step update can be made visible by “activating” the
shadow structures in one atomic step (usually a block update
representing a pointer swing). Shadow paging makes disk-
resident data structures resilient against crashes because of
the atomicity of the last step. It guarantees that the update
either takes effect in whole, or takes no effect at all.

In a typical block-oriented file system, shadow paging
performs copy-on-writes at a block-level. Creating a shadow
copy of a block changes the address of the affected block
and thus requires updates to upstream pointers. If one of
these upstream pointers does not reside in the same block,
another copy-on-write is needed to continue shadow paging.
This process continues until everything can be contained in
one block update, and the sheer block size (often 512 bytes)
results in copying an excessive amount of unmodified data.
BPFS realized that by using byte-addressable NVRAM, the
amount of data copied can be drastically reduced. For exam-
ple, updating an 8-byte pointer value requires only an atomic
8-byte write in NVRAM, but it requires moving at least 512
bytes of data on traditional disks. While still built on top of
a block-oriented file system, short-circuit shadow paging in

BPFS greatly reduced the amount of data transferred during
the shadow paging process.

BPFS and Persistent Masstree share the same goal of
making data structures completely NVRAM-resident and re-
silient to crashes. BPFS works with file system data struc-
tures that were originally designed with persistence in-mind,
albeit for disks, while Persistent Masstree works with a com-
plex in-memory data structure originally designed for con-
currency and performance, but not persistence. Persistent
Masstree also borrows the idea of shadow paging to keep in-
termediate states invisible. However, regular shadow paging
techniques using copy-on-writes do not work well in Mass-
tree, where backward links are common. Backward links
are useful for efficient in-memory operations, but as a re-
sult changing the identity (address) of a node would invali-
date pointers to this node both up and down the tree. Doing
copy-on-write for every node needs updating easily leads to
a cascade of copy-on-writes covering pretty much the en-
tire data structure. Persistent Masstree uses an “in-place”
shadow paging technique that doesn’t change the identity of
the node being updated.

REWIND [2] aims at adapting the techniques used to sup-
port durable database transactions in NVRAM. It features
write-ahead logging as a systematic approach to support
crash-consistent NVRAM-resident data structures. We will
show that Persistent Masstree’s shadow paging technique ac-
tually shares very similar ideas to write-ahead logging, but
is completely localized. REWIND, however, requires serial-
izing writes to a global write-ahead log, which translates to
lower concurrent performance for updates. Persistent Mass-
tree achieves a level of concurrent read/write performance
close to the original Masstree.

BPFS and REWIND see the same problem as we do: tra-
ditional software systems are not ready to take advantage
of a byte-addressable persistent storage device. However,
they both fall short of treating NVRAM as RAM by only
attempting to adapt data structures or techniques that have
a disk origin. Persistent Masstree chooses a different angle.
By allowing a concurrent in-memory data structure to oper-
ate completely in NVRAM all by itself, we perceive a way to
achieve the “no-compromise” result: having both the perfor-
mance of a DRAM-resident data structure and the durability
of a disk-based storage system.

3.2 NVRAM as Backing Storage for DRAM
Recent works on NVRAM software systems also have fo-
cused on using NVRAM as backing store for DRAM, lever-
aging NVRAM’s capacity to provide abundant main mem-
ory resources. pVM [7], as an example, extends the oper-
ating system’s virtual memory system to utilize NVRAM.
The extended operating system is able to automatically scale
main memory capacity on-demand, and shows 2.5x speedup
for memory intensive applications. pVM also provides a
simple object store service, and it out-performs state-of-the-
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Shadow state

Shadow pointer

// Masstree node data:

Shadow copy of node data

Figure 1. Layout of an augmented Masstree node to support
operations in NVRAM. Shadow state can be in one of the
three states shown on the right, and when it’s in the invalid
state the shadow pointer does not point to a valid shadow
copy.

art block-based solutions by 2x, with 4x less overhead at the
operating system level.

We share the same vision as pVM-like systems. As mem-
ory becomes abundant, computer systems are more likely to
treat memory as a service rather than a simple scratch space.
pVM’s simple object store service shows what NVRAM-
backed memory systems can do, but we want to take it even
further. STO-Snapshot builds two more services on top of a
NVRAM-backed memory system: serializable transactions
and transactional snapshots.

We choose to add snapshot support to a software transac-
tional memory system because it provides a means to offload
long-running read-only transactions, without having them
limiting the throughput of the system. The goal of the ex-
tended software transactional memory system is to provide a
declarative and easy-to-use programming interface as a new
service, just as those provided by database systems. We also
want to provide this service all directly from main memory,
and with the same (or even greater) level of performance
one would expect from today’s in-memory systems that do
not have these advanced features.

4. Persistent Masstree
4.1 Overview
Persistent Masstree is a version of Masstree that’s designed
to work well in NVRAM. It guarantees the recoverability of
Masstree’s split() operation. A light-weight shadow pag-
ing technique is used for nodes that undergo splits, and it
does not rely on a global write-ahead log. The technique it-
self, however, does share many similarities with write-ahead
logging, except being completely localized and operating at
a finer granularity.

We modified Masstree both in data layout and in execu-
tion logic to support recoverability in NVRAM. We augment
every original Masstree node by 2 words, or 16 bytes: one

invalid

valid-s valid-d

Figure 2. Allowed transitions among shadow states.

State name Description
invalid
(I)

The shadow copy is currently invalid
or contains inconsistent data. Any one
other than the active writer shall not try
to dereference the shadow pointer.

valid-d
(VD)

The shadow copy is valid and contains
consistent data. All information about
the on-going split can be found in the
shadow copy. Shadow copy is not visi-
ble.

valid-s
(VS)

The shadow copy is valid and contains
consistent data. The shadow copy can be
made visible at any moment (structurally
valid).

Table 1. Shadow States

word for a special “shadow state” field for each node, and the
other word for a pointer that optionally points to a shadow
copy of the node.

Figure 1 shows the layout of a node in Persistent Mass-
tree. Currently we actually only use two bits in the shadow
state field, so we can reduce the space overhead further by
combing it with the pointer field. For clarity and simplicity
we will treat them as separate words for the rest of the paper.

4.2 Hand-over-hand State Transition
In this section we describe how we make splits recoverable
for any unclean shutdowns. As in many other systems, Per-
sistent Masstree uses a shadow copy to store and manipu-
late intermediate states that are not easily recoverable. Once
the data in a shadow copy becomes “consistent” (safe to ac-
cess even if power fails now), the shadow state associated
with the shadow copy will be updated. Each shadow state
can only be in one of the three allowed states. Table 1 de-
scribes the meaning of each state, and Figure 2 is the state
transition diagram among the three states.

State transitions are governed in such a way that for a
given parent-child node pair, only one node changes its state
at a time. The transitions happen at the parent-child pair
in a hand-over-hand fashion: for a split at the child, let
pState and cState denote the shadow states at the parent
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and the child, respectively, then the state pair [pState,cState]
transitions in the following manner:

[I, I]→ [I,V D]→ [V D,V D]→ [V D,V S]→ [V D, I]

Now we describe in detail when these transitions are
allowed to happen. A node starts with the I state, and when
it needs to split, a shadow copy of the node will be created,
and the shadow pointer in the node is updated to point
to the shadow copy. The split operation takes place in the
shadow copy, and therefore not visible to concurrent readers.
Concurrent writers are locked out of the node because the
split() operation locks the splitting node. After the split
is complete in the shadow copy, the splitting node’s state
changes from I to V D. At this point, the split becomes an
insert to the parent node, which locks the parent. After the
lock at the parent is acquired, again a shadow copy is created
and the insert (or an additional split, if necessary) takes place
in the shadow copy just like before. Once the operation is
complete at the shadow copy in the parent, the parent’s state
changes from I to V D. Since the parent may split, it may
be necessary to update the parent pointers in the split child
(which are two child nodes, because of the split). The parent
updates these parent pointers in the child nodes, changes the
child’s shadow state from V D to V S. At this point the all
information in the child is up-to-date and visible. Note that
the valid information is not in the child node itself, but in
its shadow copy instead. The V S shadow state indicates that
the information in the node itself is obsolete, and anyone
looking at the node should go to the shadow copy instead.
In the mean time the child node copies information from the
shadow copy to the main node, bringing the node itself up-
to-date, switching the shadow state back to I, and unlocks.

Note that the shadow copy is only “temporary” and gets
deallocated once the split is complete. This keeps the iden-
tity of the splitting node unchanged and alleviates pointer
updates up or down the tree. We call this technique “in-
place” shadow paging due to the fact that it does not change
the identity of a node, just like an in-place update.

This process gives us a transition path described above.
Note that after the last step, if the parent splits and needs
an additional insert to the “grandparent”, then the parent es-
sentially becomes the new child, and the state pair becomes
equivalent to [I,V D] if we look one level up the tree. This fits
seamlessly with the iterative split() process implemented
by Masstree.

The iterative process comes to an end when there is
enough room for an insert and no more splits are required. In
this case, no more locks need to be acquired up the tree, and
the node undergoing an insert (which should be in state V D)
simply switches itself to state V S, brings itself up-to-date
by copying from the shadow copy, and finally changes its
shadow state back to I before unlocking. Figure 3 describes
the complete process in pseudo-code.

split(node, new_key):
node.lock()
// create the shadow copy
node.shadow_ptr = new NodeData(node)

// split the node using the shadow copy
// returned key is the one to insert to parent
p_key = do_split(node.shadow_ptr, new_key)

node.shadow_state = VD

while true {
parent = node.parent
parent.lock()
parent.shadow_ptr = new NodeData(parent)
if parent.has_room() {

do_insert(parent.shadow_ptr, p_key)
parent.state = VD
// shadow shate at parent can be elevated to VS
// since no more splits are needed
parent.state = VS
node.state = VS
node.copy_from_shadow()
node.state = I
node.unlock()

parent.copy_from_shadow()
parent.unlock()
return

}
// parent also needs splitting
p_key = do_split(parent.shadow_ptr, p_key)
parent.state = VD
node.state = VS
node.copy_from_shadow()
node.state = I
node.unlock()

// go to the next iteration
node = parent

}

Figure 3. Pseudo-code of the recoverable split() in Persis-
tent Masstree.

4.3 Recovery
The recovery process needs two pieces of information to re-
cover a system stopped in an inconsistent state: 1) identify
operations that were incomplete, and 2) all necessary infor-
mation and data to redo or undo these operations. In a system
with write-ahead logging, all these information would be
readily available in the log. Persistent Masstree achieves the
same by clever use of the shadow states and shadow copies
of nodes where updates did not finalize. Persistent Masstree
re-executes incomplete operations during recovery.

First, the recovery process needs to identify any split op-
erations that were left incomplete when the system stopped.
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The shadow state I is the stable state for nodes not under-
going splits, and a shadow state of V D or V S indicates in-
progress split operations. Shadow states serve as clear sig-
nals for the recovery process to identify incomplete opera-
tions.

Second, to re-execute an identified in-complete split, the
recovery process needs to know which key to insert to the
upper level, if any. One invariant in our system is that for
any incomplete split, there will be at least one node left in
shadow state V D or V S. Both states mean that the associ-
ated shadow copy contains complete information (informa-
tion that would have made it to the main node if the split
completes). By looking at the shadow copy and following B-
tree invariants, the recovery process has enough information
to infer if an insertion is needed at the next level, and if so
which key to insert. In other words, if we borrow terms from
Figure 3, shadow copies provide enough information for the
recovery process to recover p_key for the iteration where the
split is stopped. The recovery process can pick right up from
where the program was stopped and finish the rest of it by
following exactly the same process depicted in Figure 3.

4.4 Memory Fences and Cache Flushes
Although NVRAM devices provide data persistence by
themselves, accesses to these devices still go through the
CPU’s cache hierarchy and buffers in the memory subsys-
tem, which are still volatile. Additional care needs to be
taken to ensure these architectural artifacts do not interfere
with our durability and consistency goals [1]. Additionally,
the compiler, run time systems, and the hardware may op-
timize code by reordering them, which can be problematic
when we work with persistent data. As an example, before a
Persietent Masstree insert operation returns, it should make
sure that the inserted data safely made it to persistent stor-
age. We don’t want caching to weaken this guarantee, and
we certainly don’t want anything at this critical stage to get
reordered.

We use specialized hardware instructions to deal with
these issues. Intel’s latest Instruction Set Architecture (ISA)
extension [6] provides instructions for working with non-
volatile memory. The newly introduced pcommit instruction
can be used to flush cached/buffered updates in the NVRAM
domain to persistent storage, and it does so without inval-
idating cache lines. A regular mfence instruction is all we
need to prevent reordering. In Persistent Masstree operations
that take effect by doing an atomic write (insert/remove), we
need an mfence and a pcommit instruction before the atomic
write. For split(), we need to do this every time before a
shadow state transition.

5. STO-Snapshot
5.1 Overview
STO-Snapshot is an extension to the STO software transac-
tional memory library to support efficient and transactionally

namespace Sto:
// take a snapshot; only to be used outside of a transaction
sid_type take_snapshot();
// specify the snapshot to be used this transaction
// transaction must be read-only to use this method
void set_active_sid(sid_type sid);
// return the snapshot being used by the current transaction
sid_type active_sid();

Figure 4. The STO-Snapshot public interface.

consistent snapshots for STO data types. It heavily relies on
the STO concept of “logical segments” in data types and im-
plements snapshots using copy-on-write.

STO-Snapshot provides a framework to help data type
implementers maintain snapshots for each logical segment
of the data type. It also provides public interfaces for an
application to take a snapshot of all active transactional data
types and to query them at a specified snapshot.

Snapshots taken by STO-Snapshot are system-wide,
meaning that they are transactionally consistent for all STO
data types that are active in the system. STO-Snapshot iden-
tifies snapshots by “snapshot IDs” (or SIDs), which are 64-
bit numbers taken from the TID space.

5.2 Interface
The STO-Snapshot interface consists of the user-facing pub-
lic run time interfaces and a data-type-implementer-facing
framework for managing snapshot for the logical segments
of a particular data type. Figure 4 describes the public inter-
faces as an extension to the STO core interface. A user who
wants to save the current state of the system as a snapshot
simply calls Sto::take_snapshot() from outside of a trans-
action. The method will return a SID that can be used to
reference the snapshot being taken at the moment. To access
any given snapshot, the user simply starts a new read-only
transaction and calls Sto::set_active_snapshot() with the
proper SID before issuing reads.

SIDs and TIDs share the same space. STO uses monoton-
ically increasing TIDs, which reflect the serialization order
of committed transactions. When a user takes a snapshot and
gets a SID s, the snapshot reflects the collective effect of all
committed transactions with TIDs (s−1) or smaller.

STO-Snapshot also provides a framework to help data
type implementations organize snapshot copies. The frame-
work defines a “Base” object for each type of logical seg-
ment that needs copy-on-write snapshots. It contains a most
current version of this segment as well as a history of snap-
shot copies of the segment. To better support in-memory data
structures that heavily use pointers, STO-Snapshot also pro-
vides the option for data types to manage pointers separately
from semantic data. Snapshots are read-only, so all updates
to a logical segment go to the most current version in the
Base object. To support STO transactions, a compatible ver-
sion number is also included in the Base object. Snapshot
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Figure 5. Sto-Snapshot “Base” object layout. A Base object
exists for each data structure logical segment (node, page,
element, etc.) that requires copy-on-write snapshots.

reads of a data type may lead to searches in the history list
of the logical segments to return the proper data. The lay-
out of a STO-Snapshot Base object is shown in Figure 5. To
follow this layout and also for explanatory reasons, we will
refer to the most current version of a segment in the Base

object as the “top-level” version in the following sections.
The data type implementation is completely free to use

this framework however it wants, but the framework works
most naturally when the data type is implemented as a union
of all logical segments ever created, snapshots or current. We
will elaborate more on this in § 5.5.

5.3 STO-Snapshot in Action
This section gives a high-level overview of how transactional
reads and writes interact with the STO-Snapshot framework.

There are two types of transactional reads, snapshot reads
and non-snapshot reads. Non-snapshot reads observe the
most current state of the data type. They simply ignore the
history lists and always access the top-level version of each
logical segment. Snapshot reads are more complicated since
they may need to traverse the history list. For each STO-
Snapshot Base object, a snapshot read will look at both
the top-level and all versions stored in the history list to
find the valid copy. If a copy is found, it will follow the
corresponding data in that version to go to the next segment,
otherwise it simply skips the segment.

Transactional writes are not allowed to modify an existing
snapshot and also only operate at top-level versions. At ex-
ecution time, transactional writes simply ignore the history
list of a Base object and apply the same conflict-detection
logic as the original STO design.

At commit time, instead of performing in-place updates
to the top-level version of the segment, the implementation
must check whether this version can be referenced in a
valid snapshot. If yes, a copy-on-write operation is required:
saving the old version to the history list, creating a new
version with the updates applied, and making it the new top-
level version.

Deleting or unlinking a logical segment from a data struc-
ture should also be treated as an update, as future read-
only transactions may still refer to snapshot versions in a
recently unlinked segment. When a write tries to delete a
segment that’s part of a snapshot, it moves the old top-
level version into the history list and creates a new version,
marks it as “deleted”, and makes it the new top-level. Non-
snapshot reads will skip segments whose top-level versions
are marked as “deleted”.

5.4 The Global Snapshot Clock
In the previous section, we briefly mentioned that while an
overwriting transaction installs its changes, it should some-
how detect if a top-level version of a data structure segment
belongs to an existing snapshot. We implement this effi-
ciently by using a Global Snapshot Clock, or GSC, which
is updated to the global TID value every time a snapshot is
taken. Each data structure segment also keeps track of the
last transaction that committed changes to it, by stamping
the transaction’s commit TID along with the updates. In our
design, a version of a data structure segment with a stamped
TID t could be referenced by a valid snapshot if and only if
t < GSC. We call this check “the GSC test”. An overwrite
operation must perform a copy-on-write before overwriting
a data structure segment that passes the GSC test. It is impor-
tant that these GSC tests are only performed after the over-
writing transaction obtains its commit TID. This guarantees
that no snapshots are inadvertently overwritten. We demon-
strate its correctness in § 5.6.

Snapshot reads identifies snapshot copies of data struc-
tures also by looking at the stamped commit TID in each
segment. A data structure segment with stamped TID t is the
snapshot copy for a given SID s, if and only if t is the largest
value that satisfies t < s, among all copies both at the top
level and in the history list for that segment. Correctness of
this design will also be discussed in § 5.6.

The GSC also simplifies the process of taking a snap-
shot. Taking a snapshot now only involves 1) reading from
the global TID value and assigning it to GSC, 2) increment-
ing the global TID value, and 3) returning the updated GSC,
all atomically. This guarantees that no transactions can have
commit TIDs that are ever returned as SIDs. No data struc-
ture data are copied when we take a snapshot; a few global
clock value updates are all we need to capture a transaction-
ally consistent state of the entire system.

Note that updating the GSC requires an atomic read-
modify-write operation across two different words (the TID
word and the GSC word). This can be achieved using hard-
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Figure 6. Illustration of a key-value linked list in STO-Snapshot. Grey nodes are Base objects, and logical segments are defined
by the “keys”. In each copy (or version) of a logical segment, and the number following the “@” sign is the SID that identifies
the transaction that installed an update via copy-on-write. We can see that the Base object with key 3 contains a top-level record
marked as “deleted”, prompting non-snapshot reads and writes to ignore this Base object.

ware transactional memory (HTM), such as the Intel® Trans-
actional Synchronization Extensions [14], available in mod-
ern processors. Right now, we collocate TID and GSC within
a 16-byte struct, and use a 16-byte compare-and-swap loop
instead for better compatibility. To make sure that a snapshot
seen by the user refers to a set of transactions that are not
only committed but also installed, Sto::take_snapshot()

waits for all active transactions in the system to finish be-
fore returning.

5.5 Linkage between Base Objects
Most data structures implement linkage between different
logical segments via pointers. Correctly managing these
pointers with copy-on-write snapshots is a major challenge.
A naive design, which treats pointers simply as regular data
and copies them also as part of a snapshot, is much harder
to work with for complex data structures that contain back-
wards links, such as a self-balancing binary search tree.

With STO-Snapshot, data type implementations can ele-
gantly address this problem by organizing the internal data
structures of the data type as a union of all logical segments
that are 1) ever created, and 2) still referenced in snapshots.
The logical segments are stored “folded” according to data
type semantics, with each semantic logical segment only
represented once in the form of a Base object, and differ-
ent versions of it contained in the corresponding history list.
Base objects link to each other the same way logical seg-
ments do in a normal data structure. The resulting design is
similar to multi-version concurrency control [15].

We use a linked list example to demonstrate this idea.
Figure 6 illustrates what a key-value linked list looks like
with snapshots enabled. In this particular example we take
a snapshot every time after a transaction commits, except
for the most recent one with commit TID 9, which deletes

key 3. Copy-on-write installation ensures that all snapshot
versions of a logical segment are safely copied to the history
list before the updates are applied. For example, when a
snapshot read tries to access the value associated with key
3 at a specified SID 4, it will walk the list, from one Base

object to another, until it reaches the one that represents key
3. It then looks for the valid snapshot copy of that logical
segment by comparing the stamped commit TID of each
copy with SID 4, and concludes that “@3” (the purple one) is
the match. The data within that copy, however, suggest that
the record was deleted at the time, so the snapshot read shall
return a negative (key absent) result.

The linked list illustration in Figure 6 shows that linkages
are only maintained by Base objects. This can be a useful
invariant and keeps programing with STO-Snapshot simple.
Nevertheless, the system does give data type implementa-
tions the freedom to have direct links between history list
entries (directly between colored nodes in the figure). This
may not always be possible, however, if the “next” node of a
given node depends on the SID specified for a snapshot read.
For example, in Figure 6, the green copy (@1, V=0) of the
logical segment with K=0 is followed by the green copy (@1,
V=6) of K=3 if we query the data structure with SID = 2, but
followed by the purple copy (@3, V=5) of K=1 instead for
SID = 5.

5.6 Correctness
STO-Snapshot operates independently of STO’s concur-
rency control and conflict detection logic for non-snapshot
reads and transactional writes, so its correctness is based on
the following two properties: 1) writes never throw away
useful snapshots; 2) snapshot reads return the correct histor-
ical version of a data structure segment requested.
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Writer correctness Let’s say a transactional write is in its
commit stage and has obtained commit TID t. It is guaran-
teed to commit, and is bound to overwrite a data structure
segment previously stamped with TID c. The transactional
write will directly overwrite it without creating any copies if
c fails the GSC test, or GSC ⩽ c. We won’t have any prob-
lems if GSC stays less than or equal to c for the duration of
our commit, but what if someone else takes a snapshot in the
mean time, and changes the GSC value after we performed
the GSC test? Will that be a problem? No. Note that the write
performs the GSC test after obtaining TID c, so anyone who
takes a snapshot after the GSC test is guaranteed to get a
SID that’s greater than or equal to t +1. Such a SID will re-
fer to the value written by the current write, which stamps
TID t to the segment, as the valid snapshot value, so directly
overwriting the copy with TID c doesn’t throw away useful
snapshots.

Reader correctness Recall that a SID s is defined as refer-
ring to the snapshot that’s the collective effect of all commit-
ted transactions with TIDs s− 1 or lower. We demonstrate
the reader correctness by showing that our reader-side algo-
rithm yields the defined snapshot behavior. We mention in
§ 5.4 that reader looks for the data structure segment copy
with a stamped TID t that’s the largest among all available
ones while still satisfying t < s. The t < s condition ensures
that the snapshot read won’t return data that too up-to-date,
but we also need to make sure it doesn’t return stale data.
Note that by the time we obtain SID s, all committed trans-
actions with TIDs lower than s must have already finished
execution. Given that the writers are correct in the sense
that they never throw away useful snapshots, every available
snapshot version should be accessible to us. t being the high-
est qualifying value indicates that, among all transactions
with TIDs s−1 or lower, t is the last one in the serailization
order that modified this logical segment. Hence the updates
installed by t reflects the collective effect of all transactions
up to s−1.

Other considerations There are other aspects of the im-
plementation that are crucial for correctness. For example,
Sto::take_snapshot() must not return until all active trans-
actions (at the instant it accesses the TID value) finish exe-
cuting, otherwise a snapshot read using the prematurely re-
turned SID may miss committed but not-yet-installed trans-
actions. Also, it is the data type’s responsibility to make
sure that accesses to its internal data structures are synchro-
nized and linearizable, and that deleted segments are not
physically unlinked if valid snapshots still reference them.
The reader/writer-side correctness provided by the STO-
Snapshot framework makes it easier for data type imple-
menters to keep track of such invariants.

6. Evaluation
With functioning designs and implementations, we perform
experiments on both Persistent Masstree and STO-Snapshot
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Figure 7. Per-thread throughput comparison for puts.
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Figure 8. Per-thread throughput comparison for gets.

to evaluate whether they achieve their respective goals. We
compile all source code using gcc-5.3, and run all experi-
ment on a server powered by two Intel® Xeon® X5690 pro-
cessors (12 cores/24 hardware threads in total). Reported re-
sults for each experiment are the average of five consecutive
runs.

6.1 Persistent Masstree
We measure the overhead added by Persistent Masstree’s
new split() operation as well as its stricter restrictions on
memory ordering, by comparing it with the original Mass-
tree. All experiments are conducted in DRAM without sim-
ulating the lower access speed of NVRAM. Since NVRAM
devices are not physically available yet, the purpose of the
experiments is to find out the overhead compared to the orig-
inal Masstree, rather than the absolute performance of Per-
sistent Masstree in NVRAM.

We test the systems throughput for both reads and up-
dates. We let each system run in full-speed at different con-
current settings for 20 seconds, where the first 10 seconds
are “puts” (or inserts) and the second 10 seconds “gets”. We
measure the per-thread put/get throughput, and results are in
Figure 7 and Figure 8.

From the graphs we can tell that both systems demon-
strate good scalability. Persistent Masstree’s recoverable
split operation and memory ordering restrictions does in-
troduce a little overhead, but the overhead seems to be con-
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Figure 10. The impact of snapshots on writes, in terms of
overall effective list traversal speed. The overhead is mainly
introduced by copy-on-write.

stant at all concurrency levels and does not affect overall
scalability. Persistent Masstree’s get() operation involves
the additional step of checking shadow states of nodes vis-
ited. The augmented nodes are also slightly misaligned with
cache lines. These modifications lead to a slight overhead
at around 4% for read-only operations, also independent of
concurrency levels. The scalability of the two systems with
all-put workloads are shown in Figure 9.

6.2 STO-Snapshot Microbenchmarks
In this section, we measure the inherent overhead associated
with STO-Snapshot, and evaluate how well it achieves the
goal of providing fast in memory transactional snapshots.

We evaluate the overhead of STO-Snapshot by inserting
random key-value pairs to a linked list, taking snapshots,
and performing random snapshot look-ups. The keys are
randomly generated integers from 1 to 2048. We perform
transactions repeatedly such that every key is, on average,
overwritten approximately 120 times over the course of the
benchmark. Before measurements are performed, the linked
list is also populated to the full length. The benchmarks are
single-threaded to factor out contention.
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Figure 11. The overhead of snapshot reads. For the run with
no snapshots in the system (the left-most bar in the graph),
reads are executed as regular transactional reads.

6.2.1 Writer Overhead
We ask several questions for the benchmarks. First, does
snapshot support comes with a cost for writers? If so, how
much?

We measured the system’s performance, in terms of list
nodes visited per second, using the linked list. We vary
the frequency by which snapshots are taken, and Figure 10
shows the results. When snapshots are taken very often, most
transactional installs have to perform copy-on-writes to pre-
serve the old snapshot. This leads to a 5.9% slowdown with
respect to the zero-snapshot baseline in the worst case, where
a snapshot is taken after every transaction. As the interval be-
tween snapshots increases, performance improves quickly,
and the copy-on-write overhead soon becomes negligible. In
the case where a snapshot is taken (on average) for every
4096 transactions, ∼10 snapshots are taken during the 5 sec-
onds the benchmark is executed, and the snapshot-taking run
somehow slightly outperforms the zero-snapshot run. We are
still trying to investigate this effect, but it shows that copy-
on-write at run time incurs a near-zero overhead when data
structures are well populated and snapshots are reasonably
spaced between each other.

6.2.2 Reader Overhead
The second question we want to answer is how snapshots
affect reads. We expect snapshots to have a negative impact
on snapshot reads since they involve the additional step of
searching the history list. But is the impact really going to
be noticeable?

For this set of experiments, we again pre-populate the
list to its full length before measurements, but we also vary
the number of valid snapshots in those pre-populated lists.
The snapshot reads then access “middle-aged” snapshots on
the lists to simulate the average case. Figure 11 shows the
results.

Compared to writes, regular non-snapshot reads (the left-
most bar in Figure 11) are slightly more expensive, since
they involve the additional check() step. For snapshot reads,
however, the elimination of the commit protocol actually
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makes them faster. Searching the history list does come with
a slight cost when we compare the two extreme cases in the
graph: performance degrades for 9.17% as the number of
active snapshots goes from 8 all the way up to 32768. Most
of this performance drop is attributed to our relatively sim-
ple history list design, which only does linear searches albeit
maintaining data in sorted order. This results in poor perfor-
mance when the history list grows large. The system shows
little slowdown when the number of active snapshots in the
system remains small. Snapshot reads also out-performs reg-
ular read-only transactions in all measured cases.

6.2.3 Discussions
STO-Snapshot’s performance remains relatively stable in the
microbenchmarks, but its perceived performance can depend
a lot on the actual workload. In our tests we did not stress
the linked list with deletes, but too many deletes in conjunc-
tion with frequent snapshots will result in many “placeholder
nodes” in the linked list just to make the snapshots reach-
able. This may not affect our microbenchmark results since
these placeholder nodes are also considered meaningful “el-
ements”, but it does affect the perceived end-to-end perfor-
mance of a list look up.

It’s also worth noting that the current design of STO-
Snapshot faces a garbage collection problem – we keep cre-
ating snapshots via copy-on-write but never free them. An
epoch-based garbage collection design is currently under de-
velopment. The garbage collection scheme should operate
mostly independently of STO-Snapshot with minimal per-
formance impact on the system, but the actual effect of a
garbage collector is yet to be measured.

We do not yet have any end-to-end throughput results
for STO-Snapshot because the linked list is the only data
structure that supports it right now, and the throughput of
an O(n) data structure depends on too many variables. We
will measure STO-Snapshot’s overall performance using a
synthetic benchmark (e.g. TPCC) once we have more data
structures implemented.

7. Future Directions
Persistent Masstree and STO-Snapshot both show great
promise as first steps, and we have future plans for both
of them.

For Persistent Masstree, the very immediate next step
is to evaluate more on recoverability. We already have a
recovery program implemented but we haven’t done any
fault injection testing yet. We would also like to measure the
performance of the system with NVRAM emulation or even
physical devices as they become available. With Persistent
Masstree as a powerful building block of novel NVRAM-
optimized systems, we also plan to design and implement a
complete database system with Persistent Masstree itself or
its core ideas.

On the STO-Snapshot side, we are currently in-progress
in terms of implementing and testing a garbage collection
scheme that allows the system to reclaim memory usage,
once the user tells the system he/she no longer needs a snap-
shot. We would also like to apply it to more data structures
so that we can more thoroughly test the system with standard
benchmarks. We also feel very excited about more powerful
applications of STO-Snapshot, such as using it in conjunc-
tion with NVRAM’s non-volatility to support durable STM
transactions.

8. Conclusion
Software system designs always follow the intrinsic proper-
ties and limitations of the underlying technology on which
the system operates. With advanced memory technologies
like NVRAM arriving in the near future, software systems
must also adapt to catch up with and take advantage of these
technologies. NVRAM provides fast and byte-addressable
persistence storage right from the memory bus, rendering
traditional block-based storage systems obsolete. NVRAM
is also abundant in capacity, making scarce main memory
resource a thing of the past. With cheap and abundant mem-
ory in our systems, programs can use memory as a service,
rather than just a simple scratch space. We adapt and extend
two existing systems to answer the calls for change.

In Persistent Masstree, we take a concurrent data struc-
ture designed for volatile DRAM and make it an NVRAM-
resident crash-resilient data structure. We used novel tech-
niques that borrow ideas from both shadow paging and
write-ahead logging, but are optimized for byte-addressable
NVRAM. Persistent Masstree achieves durability and crash
consistency with only < 10% performance overhead com-
pared to the original Masstree, at very high concurrency
settings.

We also perceive STO-Snapshot, an extension to the STO
software transactional memory library to support transac-
tional snapshots of in-memory data structures. It makes use
of the abundant storage capacity of NVRAM devices, and
makes memory function more like a database service. Based
on a fast transactional memory system, STO-Snapshot fur-
ther simplifies and improves the performance of concur-
rent programming by providing the means to offload long-
running read-only transactions with snapshots, and it does
so with very little performance impact on regular reads and
writes.

With both systems showing promise as first steps, we will
continue to improve and extend the their functionalities and
to explore more exciting applications.
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