

May 11, 2020

In lieu of all dissertation committee members’ signatures, I, John Girash, Interim Director of
Graduate Education, appointed by the Harvard John A. Paulson School of Engineering and
Applied Sciences, confirm that the Dissertation Committee has examined a dissertation
titled “On the Design and Implementation of High-performance Transaction Processing in
Main-memory Databases”, presented by Yihe Huang, a candidate for the degree of Doctor
of Philosophy in the subject of Computer Science for May 2020 degree conferral, and
hereby certify that it is worthy of acceptance as of May 7, 2020.

John Girash, PhD
Interim Director of Graduate Education

Office of Academic Programs
29 Oxford St, Pierce Hall 110, Cambridge, MA 02138
617 496 5956
jgirash@seas.harvard.edu

On the Design and Implementation of
High-performance Transaction Processing in

Main-memory Databases

A dissertation presented

by

Yihe Huang

to

Harvard John A. Paulson School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May 2020

© 2020 Yihe Huang

All rights reserved.

Dissertation Advisor:
Professor Eddie Kohler

Author:
Yihe Huang

On the Design and Implementation of High-performance Transaction
Processing in Main-memory Databases

Abstract

Main-memory databases are core to many applications, and the performance of modern

main-memory database systems is a subject of intense study. It is long understood that

the concurrency control algorithm underlying a database system is the deciding factor of

how well the system performs under contended workloads. Optimistic concurrency control

(OCC) can achieve excellent performance on uncontended workloads for main-memory

transactional databases. Contention causes OCC’s performance to degrade, however, and

recent concurrency control designs, such as hybrid OCC/locking systems and variations

of multiversion concurrency control (MVCC), have claimed to outperform the best OCC

systems. We evaluate several concurrency control designs under varying contention and

varying workloads, including TPC-C, and find that implementation choices unrelated to

concurrency control may explain much of OCC’s previously-reported degradation. When

these implementation choices are made sensibly, OCC performance does not collapse on

many high-contention workloads. We also present two optimization techniques, commit-

time updates and timestamp splitting, that can dramatically improve the high-contention

performance of both OCC and MVCC. Though these techniques are known, we apply them

in a new context and highlight their potency: when combined, they lead to performance

gains of 4.8× for OCC and 3.8× for MVCC in a TPC-C workload.

iii

Contents

Title Page . i
Copyright Page . ii
Abstract . iii
Table of Contents . iv
List of Tables . vii
List of Figures . viii
Acknowledgments . x
Dedication . xii

1 Introduction 1
1.1 Databases in Modern Applications . 1
1.2 Database Transactions . 2
1.3 Main-memory Databases . 3
1.4 Concurrency Control . 4
1.5 Improving Main-memory Transaction Processing Performance 6

2 Related Work 10
2.1 Modern Concurrency Control Research 10
2.2 Basis Factors . 13
2.3 High-Contention Optimizations . 14
2.4 Transactional Memory . 15

3 STOv2 System Description 17
3.1 The STO Software Transactional Memory Framework 17
3.2 STOv2 Main-memory Database . 18

3.2.1 Phantom protection . 19
3.2.2 OSTO . 20
3.2.3 MSTO . 21

iv

3.2.4 TSTO . 24
3.2.5 Garbage collection . 26
3.2.6 Deletes in MSTO . 30

4 Experiment Setup 31
4.1 Experiment Setup . 31
4.2 Workloads . 32

5 Understanding Baseline Performance 34
5.1 Basis Factors . 34

5.1.1 Contention regulation . 35
5.1.2 Memory allocation . 37
5.1.3 Abort mechanism . 38
5.1.4 Index types . 39
5.1.5 Contention-aware indexes . 39
5.1.6 Other factors . 42
5.1.7 Summary . 44

5.2 Baseline Evaluation . 44
5.2.1 Overview . 45
5.2.2 Benefits of reordering . 48
5.2.3 Cross-system comparisons . 51

6 High Contention Optimizations 52
6.1 Overview . 52

6.1.1 Commit-time updates (CU) . 53
6.1.2 Timestamp splitting (TS) . 55

6.2 Implementation of CU . 58
6.2.1 CU implementation in MSTO . 58
6.2.2 Concurrent flattening in MSTO CU 58
6.2.3 Impact on MSTO garbage collection 60

6.3 Implementation of TS . 60
6.4 Workload integration . 62
6.5 Evaluation . 64

6.5.1 Combined effects . 64
6.5.2 Separate effects . 68

v

7 Discussion 70
7.1 Phantom Protection in TSTO . 70
7.2 Conflicts due to Sequential Insertion . 72
7.3 MSTO Timestamp Splitting Implementation Choices 77
7.4 MSTO Commit-time Update Implementation Choices 79
7.5 Future work . 81

7.5.1 Better locks . 81
7.5.2 Multi-version indexes . 82
7.5.3 Better contention-aware indexes 82
7.5.4 Garbage collection improvements 83
7.5.5 Automated analysis of workload properties 84
7.5.6 More workloads . 85
7.5.7 Relaxed consistency models . 85
7.5.8 Persistence . 86

8 Conclusion 87

References 89

vi

List of Tables

3.1 Garbage-collection-related epochs in STOv2. For any thread th and at all
times, weg ≥ weth > reg ≥ reth > gce. 27

5.1 How comparison systems implement the basis factors described in § 5.1.
On high-contention TPC-C at 64 cores, “+” choices have at least 0.9×
STOv2’s performance, while “−” choices have 0.7–0.9× and “−−” choices
have less than 0.7×. 44

6.1 Throughput in Ktxns/sec at 64 threads in high-contention benchmarks, with
improvements over respective baselines in parentheses. 69

vii

List of Figures

3.1 Key-record mapping in STOv2 ordered tables. 19
3.2 Record structure in OSTO and TSTO. 20
3.3 Although t2 finishes later in time, it can still commit if placed earlier than

t1 in the serial order. OCC will abort t2; MVCC and TicToc can commit it. . 21
3.4 MVCC version chain structure, with the visible range (in terms of rts)

shown below each version. 21
3.5 Record structure and in MSTO. 22
3.6 A transaction interleaving that is allowed in TicToc but not in plain OCC. . 24

5.1 OSTO throughput under TPC-C full-mix showing impact of basis factors.
Factor optimizations are individually turned off from the optimized base-
line to demonstrate the capping effect of each factor. 36

5.2 Example illustrating index contention on the TPC-C NEW ORDER table. An
insert to the end of one district in new-order can conflict with a range scan
in delivery on the adjacent district. 40

5.3 Contention-aware index routes keys with distinct prefixes to different leaves. 41
5.4 Throughput of delivery transactions with and without contention-aware in-

dexes. Showing OSTO results with TPC-C full mix. 42
5.5 STOv2 baseline systems performance on TPC-C workloads. 47
5.6 STOv2 baseline systems performance on YCSB workloads. 48
5.7 STOv2 performance on Wikipedia and RUBiS workloads. 49
5.8 Cross-system comparisons: STOv2 baselines and other state-of-the-art sys-

tems, TPC-C full mix. 50

6.1 Record structures with timestamp splitting. Assume the record has four
columns, where Col1 and Col2 are infrequently updated, and Col3 and
Col4 are frequently updated. 56

viii

6.2 Record structure in MSTO with commit-time updates. The COMMITTED∆

version encodes an updater. Concurrent transactions can insert more delta
versions either before or after the COMMITTED∆. 59

6.3 An example of the human-readable XML expression of TS policy, showing
column groups for TPC-C DISTRICT table records. 61

6.4 Updater for STOCK table records, used by TPC-C’s new-order transactions.
The operate() method encodes the commit-time operation. 63

6.5 TPC-C results with high contention optimizations. 65
6.6 YCSB results with high contention optimizations. 66
6.7 Wikipedia and RUBiS results with high contention optimizations. 67

7.1 TSTO full vs. incorrect phantom protection comparison using TPC-C. . . . 73
7.2 Performance impact of sequential HISTORY table insertions (SeqKey) in

high contention TPC-C. 75
7.3 Impact of sequential HISTORY table insertion on TPC-C basis factor exper-

iments. 76
7.4 Performance comparison of different MSTO TS implementations: multi-

chain (default) and vertical partitioning (VertPart). 78
7.5 Performance comparison of different MSTO CU implementations: flatten-

freeze (default) and reading in the past (ReadPast). 80
7.6 Versions must be kept alive due to an active transaction under the current

epoch-based garbage collection mechanism. 83

ix

Acknowledgments

Pursuing a doctoral degree in a foreign country is one of the biggest decisions I made

in my life so far and also one of the first major life decisions I made on my own. Being able

to contribute to science and to advance knowledge and learning is something I have always

wanted to do since I was a young kid. It is also something I do not know if I will ever be

able to pull off or even can afford to do. At the conclusion of this journey, I am deeply

grateful for everyone who offered their help and support all along to make it possible.

I would like to thank numerous professors I worked with over the years for their input

and guidance on my work. I have never worked with such great minds before, and all these

experiences really make me feel I am a part of the systems research community, not just

here in Cambridge, but globally. In particular, I would like to express my gratitude to my

advisor Professor Eddie Kohler. I thank them very much for pushing me to try to understand

the subtlest differences from previous work or any unexplained results in our experiments.

These experiences teach me how to ask important questions and make me a much better

researcher. Prof. Kohler has been a great mentor not just academically, but in life. Those

conversations we had during uncertain and difficult times for me really meant a lot and

helped me adjust to stress, and I am really grateful for them. I would also like to thank

Professor Margo Seltzer, who helped me form many important professional connections

throughout the years that I am sure I will treasure in my future endeavors. I am grateful

that I got to serve alongside both Prof. Kohler and Prof. Seltzer as their teaching fellow to

advance our most important mission for our students.

I would also like to thank my numerous collaborators including William Qian, Profes-

sors Liuba Shrira and Barbara Liskov for all their help in making my thesis work possible.

A very special shout-out to William for building the base version of our MVCC system,

and for all the office jokes and tikz tips.

x

I would also like to thank my parents, my friends, and my very special partner Helen

for their emotional and material support throughout the up-and-downs of my PhD endeavor.

The journey to pursue a PhD can be stressful at times, and it undoubtedly puts a lot of stress

on my life and our relationships, and without their understanding and having them as my

support system I mostly likely could not have completed it. To all my loved ones, a very

sincere thank you for all your sacrifices and for all what you have done.

Finally, I would like to acknowledge the unprecedented challenges our world faces

at this moment. This is the year 2020, and the world is confronting a once-in-a-century

pandemic that has overwhelmed health systems and wreaked economic havoc across the

world. Most if not all people, myself included, will likely feel the lasting impact and may

be forced to change plans. This is also a moment that highlights the importance of pursuing

scientific truth. I feel deeply grateful for all the researchers, scientists, and front line medical

workers working tirelessly out there saving lives, advancing our understanding of of the

disease, and developing cures and vaccines – they are the real heroes of humanity at this

moment. Like the rest of the class of 2020 whose identity will probably be forever marked

by this global event, we are graduating into an uncertain world. However, dark times call

for optimism and light, especially from those of us equipped with the will and knowledge

to make a difference. I sincerely hope that, through the next stages of my career, I can find

some way to contribute to the mitigation and prevention of future health crises like this.

Thank all of you, and we are, and will be, all in this together.

xi

To my parents Ms. Xufang He and Mr. Jingyi Huang.

xii

Chapter 1

Introduction

1.1 Databases in Modern Applications

Database management systems, or simply databases, are central to many modern ap-

plications. From social media to e-commerce to financial markets, databases power the

world’s most demanding applications and critical infrastructures.

Databases organize data in some standardized, query-able format (usually tables) so

that they can be stored and searched consistently independent of the applications that use

them. Modern applications are architected around databases to reach large scale. To serve

a large number of clients, applications are typically divided into a client-facing frontend

program and a database backend. The frontend program, usually a web page or a smart

phone app, is responsible only for rendering user interfaces, presenting data, and commu-

nicating with the backend database. Frontend programs are usually stateless and perform

tasks such as form validation and data assembly, while all the data processing and storage

tasks are handled by the database. This architecture allows these relatively thin frontend

programs to be replicated and distributed widely at ease, presenting responsive interactive

experiences for the user. It also allows such distributed applications to shift the bulk of

1

system complexity to its central piece: the database.

Workloads modern databases handle can be divided into two major categories: OLAP

and OLTP. OLAP, or On-Line Analytics Processing workloads, involve queries over large

warehouses of data that are largely static (infrequently updated), but combine and analyze

them in user-defined ways to produce insights. Examples of OLAP workloads include as-

tronomy sky surveys, big data analytics, and certain machine learning workloads. OLTP, or

On-Line Transaction Processing workloads, involve frequent updates to database records,

and/or observations of the latest values of such records. Transactions in OLTP workloads

are typically short and update-heavy. Examples of OLTP workloads include financial trans-

actions, social media posting and browsing, telecommunication switch table lookups, and

many other interactive applications.

OLAP and OLTP workloads are fundamentally different and present different chal-

lenges to database designs. Our work primarily focuses on databases specialized in

handling OLTP workloads.

1.2 Database Transactions

Databases’ central role in modern distributed applications subjects them to high con-

currency requirements, as a large number of frontend programs can issue requests to the

same underlying database system. Additionally, each client request may contain relatively

complex multi-step operations such as reading from multiple database tables or updating

multiple records based on observations made on other database state.

A better solution is to utilize a programming abstraction called transactions provided by

most modern databases. Transactions are collections of operations that are to be scheduled

as a single unit by the database.1 General database transactions guarantee ACID properties:

1We follow the “one-shot” transaction model in this work, meaning that we assume a transaction has all

2

atomicity, consistency, isolation, and durability2. In practical terms, it means that programs

issuing transactions to the database need not worry about other concurrent operations inter-

fering with the operations within a transaction. The database guarantees that the transaction

is executed as a single unit, as if it were the only operation being handled by the system.

The canonical example of a database transaction is a bank account transfer. For exam-

ple, a bank user wishes to transfer 100 dollars from account A to account B. The transfer

is authorized only if account A has enough balance, and once the 100 dollars is withdrawn

from account A, it must be deposited into account B, so that no money is lost during the

process. Moreover, any observer of the database state must always observe that the total

balance of account A and B remains unchanged at any point during the transfer (no inter-

mediate state is observable). The transfer process involves three steps: 1) check that account

A has enough balance, 2) withdraw 100 dollars from account A, and 3) deposit 100 dollars

to account B. Wrapping these three operations in a database transaction allows the transfer

to be handled properly even if multiple such account transfers occurs at the same time.

1.3 Main-memory Databases

Traditional disk-based databases struggle to handle the high transaction throughput de-

manded by modern large-scale applications. With billions of smart devices online simul-

taneously issuing database requests, databases today need to handle millions of transac-

tions per second. Persistent storage quickly become a bottleneck in disk-based databases

under such a load. Increasingly, high-performance databases trade persistence for perfor-

mance, because depending on specifics of the workload, not all database operations need

its arguments and parameters available upon start and does not communicate or interact with the caller until
it finishes executing.

2This work focuses on main-memory databases and we consider durability an orthogonal issue to this
study. We still expect transactions to respect all properties other than durability.

3

to persist immediately. Modern high performance databases keep significant amounts of

data in computers’ main-memory and process transactions directly in main-memory. Main-

memory databases can support persistence and/or high availability by creating periodic

persistent snapshots or by replicating state over the network. This work focuses on the

main-memory transaction processing aspect of these systems, and we consider durabil-

ity and network communication orthogonal to our work.

1.4 Concurrency Control

Main-memory databases use concurrency control mechanisms to implement transac-

tions and to guarantee the isolation (the “I” in ACID) property of transactions. When two

concurrent transactions access overlapping database records, the two transactions are said

to conflict. In some cases, such as when both transactions are merely reading the record,

no special handling is necessary, but in most cases concurrency control mechanisms are

invoked in light of conflicts to ensure they are isolated – no intermediate state generated

by one transaction is made visible to the other transaction. (In practice, many transactions

do allow such intermediate state to be temporarily visible, but any transactions made such

inconsistent observations must eventually abort.)

Two-phase locking is one well-known concurrency control mechanism. In two-phase

locking, prior to executing every operation in the transaction, the appropriate locks are ac-

quired for the underlying data record being accessed. This occurs for both reads and writes

– read lock are also acquired prior to reading from a database record. As the transaction

conclude, all acquired locks are released so that other transactions touching overlapping

records can make progress.

Two-phase locking is an example of pessimistic concurrency control because it assumes

the worst. It anticipates that a concurrent transaction could touch the same records it ac-

4

cesses, so it proactively locks the records in advance. This, however, results in high over-

head for read operations. Reading from a record now involves holding a read lock, which

requires expensive atomic compare-and-swap operations in shared memory.

Optimistic concurrency control (OCC) addresses the above problem by assuming that

transaction conflicts are unlikely. In a typical OCC implementation, reading from records

do not hold locks, but observes a transaction timestamp associated with the record and

stores it in the transaction’s read set. Writes in a transaction do not take effect immediately,

but are buffered in the transaction’s write set. Read and write sets of a transaction are mem-

ory private to the transaction and not visible to anyone else. When the transaction finishes

executing, the transaction executes a commit protocol, which validates the observations in

the read set to make sure they are still valid, and make all buffered writes visible while

holding the appropriate locks. From a high level, the commit protocol ensures isolation by

checking that the transaction’s read set does not overlap with any other potentially conflict-

ing transactions’ write sets. An OCC transaction aborts if any inconsistencies are detected

during the commit protocol or if it fails to acquire all the locks needed to apply the buffered

writes. If this happens, the transaction is said to abort, and the caller of the transaction can

choose either to retry its execution or to abandon the transaction.

Concurrency control mechanisms can also resolve conflicts in creative ways such as

storing multiple versions of the same record. In multiversion concurrency control (MVCC),

copy-on-write is used when a record is updated, creating a chain of versions sorted by the

versions’ creation timestamps. Reading from a record now also specifies a read timestamp,

and it then searches within the version chain of the record to find the version that is visible at

the read timestamp. MVCC prevents writes from clobbering reads in a different transaction,

while allowing both to proceed at the same time.

5

1.5 Improving Main-memory Transaction Processing Per-

formance

Due to the crucial role of main-memory databases in enabling responsive applications,

improving the performance of contended main-memory transactions is subject of intense

study [18,27,29,37,42,43,56–58,64]. Many works focus on addressing known deficiencies

in concurrency control mechanisms.

It is understood that while systems based on optimistic concurrency control (OCC)

achieve great performance in workloads with low contention. This is because read opera-

tions in OCC do not issue any writes to shared memory, meaning that they do not require

exclusive ownership of the corresponding cache lines and less cache coherence protocol

traffic. However, the validation step in OCC’s commit protocol are likely to detect conflicts

in heavily contended workloads. Frequent validation failures trigger constant roll-backs

and retries of entire transactions, leading to wasted work and even livelock or starvation

situations. It is therefore believed that OCC performs poorly in high-contention workloads,

leading to performance collapse (i.e. transaction throughput crashing to near zero) at very

high contention due to a lack of progress guarantees in their optimistic algorithms.

This understanding has prompted numerous recent concurrency control designs alter-

native to OCC. They include partially pessimistic concurrency control [57], dynamic trans-

action reordering [64], and MVCC [30, 37]. All these designs claim to achieve superior

performance over OCC in high contention workloads, while preserving or even surpassing

OCC’s performance at low contention.

Careful examination of the methodologies of these studies, however, raises questions.

In these studies, when measuring the performance of an existing OCC-based system (often

Silo [56]), experiments are often done using the system’s original code base. The newly

proposed system, however, is measured using its own separate code base. While under-

6

standable, it raises the possibility that any performance differences between the systems

could be due to difference in implementation details instead of core concurrency control

algorithm differences. More concretely, if one specific implementation of OCC performs

badly under high contention, it is inappropriate to conclude that all OCC systems perform

badly under high contention, and only a radically different concurrency control mechanism

can be effective.

To find out whether such implementation differences exist, and if so how much they

impact performance results, we analyzed the code bases of several main-memory database

systems, including Silo [56], DBx1000 [63], Cicada [37], ERMIA [30], and MOCC [57].

We found many underappreciated engineering choices – we call them basis factors – that

dramatically affect these systems’ performance in both high and low contention. For in-

stance, some transaction abort and memory allocation mechanisms can exacerbate con-

tention by obtaining a hidden lock in the language runtime, unnecessarily bottlenecking

performance at high and low contention, respectively.

To better isolate the impact of concurrency control algorithms on performance, we im-

plement and evaluate three concurrency controls – OCC, TicToc [64], and MVCC – in

our system, called STOv2, that makes good, consistent implementation choices for all ba-

sis factors. We show results up to 64 cores and for several benchmarks, including low-

and high-contention TPC-C, YCSB, and benchmarks based on Wikipedia and RUBiS. We

show that with good basis factor choices, OCC does not suffer from performance collapse

on these benchmarks, even at high contention, and OCC and TicToc significantly outper-

form MVCC at low and medium contention. This contrasts with prior evaluations, which

reported OCC collapsing at high contention [20] and MVCC performing well at all conten-

tion levels [37].

In addition, our insight into transaction performance in main-memory databases prompts

us to propose, implement, and evaluate two optimization techniques that improves transac-

7

tion processing performance for all concurrency control mechanisms we evaluated, across

a variety of high-contention workloads. The two techniques, called commit-time updates

and timestamp splitting, effectively eliminate classes of conflicts that are common in our

workloads. These techniques have workload-specific parameters, but they are conceptually

general, and we applied them without much effort to every workload we investigated. We

also developed tools to partially automate their applications in STOv2. Like MVCC and

TicToc, the techniques improve performance on high-contention workloads. However, un-

like MVCC, these optimizations have little performance impact at low contention; unlike

TicToc and MVCC, they help on every benchmark we evaluate, not just TPC-C; and they

benefit TicToc and MVCC as well as OCC. Though inspired by existing work, but we be-

lieve we are the first to implement the two techniques’ application to TicToc and MVCC.

Our insight that they effectively eliminate many common concurrency control conflicts in

a variety of workloads is also new.

In summary, our study reveals results that challenge the conventional wisdom of high-

contention main-memory transaction performance. We find that OCC performs better than

previously reported in a variety of real-world-inspired high-contention workloads. We be-

lieve that basis factors unrelated to concurrency control intrinsics contributed the discrep-

ancies between our and prior studies. We also identify two optimizations that help reduce

concurrency control conflicts in contended workloads. We demonstrate that these optimiza-

tions benefit all concurrency control algorithms we study, are effective in all workloads we

measure, and achieve greater performance benefits than concurrency control improvements

alone.

The rest of the dissertation is organized as follows. Chapter 2 describes related work in

the field of main-memory transaction performance studies. Chapter 3 provides background

information on STOv2, the main-memory database system we use for this study, including

information on STO [27], a software transactional memory framework upon which STOv2

8

is based. Chapter 4 describes our experimental setup to facilitate reproduction of our results.

Chapter 5 presents a controlled study of the baseline performance of three concurrency

control mechanisms we evaluated, where we identify and enumerate the impact of basis

factors. Chapter 6 describes commit-time update and timestamp splitting high-contention

optimizations and evaluates their effects in our suite of benchmarks. Finally, we conclude

by discussing current limitations and promising directions for future work in Chapter 7.

9

Chapter 2

Related Work

Improving and understanding transaction processing performance is an important and

active area of research, and there are numerous exiting work related to our study. Most

of them propose new concurrency control algorithms designed for high-contention work-

loads, while a few of them also demonstrate the impact of non-concurrency-control factors.

There are also significant precursors to the two high-contention optimizations we describe

in Chapter 6. Many ideas and observations from this work are also related to insights from

transactional memory system studies.

2.1 Modern Concurrency Control Research

Concurrency control is a central issue for databases and work goes back many decades [24].

As with many database properties, the best concurrency control algorithm can depend on

workload, and OCC has long been understood to work best for workloads “where transac-

tion conflict is highly unlikely” [33]. Since OCC transactions cannot prevent other transac-

tions from executing, OCC workloads can experience starvation of whole classes of transac-

tions. Locking approaches, such as two-phase locking (2PL), lack this flaw, but write more

10

frequently to shared memory. Performance tradeoffs between OCC and locking depend on

technology characteristics as well as workload characteristics, however, and on multicore

main-memory systems, with their high penalty for memory contention, OCC can perform

surprisingly well even for relatively high-conflict workloads and long-running transactions.

This work was motivated by a desire to better understand the limitations of OCC execution,

especially on high-conflict workloads.

The main-memory Silo database [56,65] introduced an OCC protocol that, unlike other

implementations [13, 33], lacked any per-transaction contention point, such as a shared

timestamp counter. Though Silo addressed some starvation issues by introducing snap-

shots for read-only transactions, and showed some reasonable results on a high-contention

workload, subsequent work has reported that Silo still experiences performance collapse

on other high-contention workloads. These discrepancies are due to its basis factor imple-

mentations, as discussed in § 5.1.

Since Silo, many new concurrency control techniques have been introduced. We con-

centrate on those that aim to preserve OCC’s low-contention advantages and mitigate its

high-contention flaws.

TicToc’s additional read timestamp allows it to commit some apparently-conflicting

transactions by reordering them [64]. Timestamp maintenance becomes more expensive

than OCC, but reordering has benefits for high-contention workloads. We present results

for our implementation of TicToc.

Transaction batching and reordering [16] aims to discover more reordering opportuni-

ties by globally analyzing dependencies within small batches of transactions. It improves

OLTP performance at high contention, but requires more extensive changes to the com-

mit protocol to accommodate batching and intra-batch dependency analyses. We consider

our workload-specific optimizations orthogonal to these techniques as our optimizations

eliminate unnecessary dependency edges altogether instead of working around them.

11

Hybrid concurrency control in MOCC [57] and ACC [53] uses online conflict mea-

surements and statistics to switch between OCC-like and locking protocols dynamically.

Locking can be expensive (it handicaps MOCC in our evaluation), but prevents starvation.

MVCC [6,48] systems, such as ERMIA [30] and Cicada [37], keep multiple versions of

each record. The multiple versions allow more transactions to commit through reordering,

and read-only transactions can always commit. ERMIA uses a novel commit-time valida-

tion mechanism called the Serial Safety Net (SSN) to ensure strict transaction serializabil-

ity. ERMIA transactions perform a check at commit time that is intended to be cheaper

and less conservative than OCC-style read set validations, and to allow more transaction

schedules to commit. The SSN mechanisms in ERMIA, however, involve expensive global

thread registration and deregistration operations that limited its scalability [57]. In our ex-

periments, ERMIA’s locking overhead – a kind of basis factor – further swamps any im-

provements from its commit protocol. Cicada contains optimizations that reduce overhead

common to many MVCC systems, and in its measurements, its MVCC outperforms single-

version alternatives in both low- and high- contention situations. This disagrees with our

results, which show our OCC system outperforming Cicada at low contention (Figure 5.8b).

We believe the explanation involves basis factor choices in Cicada’s OCC comparison sys-

tems. Our MVCC system is based on Cicada, though we omit several of its optimizations.

Optimistic MVCC still suffers from many of the same problems as single-version

OCC. When executing read-write transactions with serializability guarantees, read-write

and write-write conflicts still result in aborts. Optimizations such as commit-time updates

and timestamp splitting can alleviate these conflicts.

Static analysis can improve the performance of high-contention workloads, since given

an entire workload, a system can discover equivalent alternative executions that generate

many fewer conflicts. Transaction chopping [51] uses global static analysis of all possi-

ble transactions to break up long-running transactions such that subsequent pieces in the

12

transaction can be executed conflict-free. More recent systems like IC3 [58] combine static

analysis with dynamic admission control to support more workloads. Static analysis tech-

niques are complementary to our work, and we hope eventually to use static analysis to

identify and address false sharing in secondary indexes and database records, and to auto-

mate the application of commit-time updates and timestamp splitting.

2.2 Basis Factors

Several prior studies have measured the effects of various basis factors on database per-

formance. A recent study found that a good memory allocator alone can improve analytical

query processing performance by 2.7× [19]. A separate study presented a detailed evalua-

tion of implementation and design choices in main-memory database systems, with a heavy

focus on MVCC [62]. Similar to our findings, the results acknowledge that CC is not the

only contributing factor to performance, and lower-level factors like the memory allocator

and index design (physical vs. logical pointers) can play a role in database performance.

While we make similar claims in our work, we also describe more factors and expand the

scope of our investigation beyond OLAP and MVCC.

Contention regulation [23] provides dynamic mechanisms, often orthogonal to concur-

rency control, that aim to avoid scheduling conflicting transactions together. Cicada in-

cludes a contention regulator. Despite being acknowledged as an important factor in the

database research community, our work demonstrates instances in prior performance stud-

ies where contention regulation is left uncontrolled, leading to potentially misleading re-

sults.

A review of database performance studies in the 1980s [2] acknowledged conflicting

performance results and attributed much of the discrepancy to the implicit assumptions

made in different studies about how transactions behave in a system. These assumptions,

13

such as how a transaction restarts and system resource considerations, are analogous to

basis factors we identified in that they do not concern the core CC algorithm, but signifi-

cantly affect performance results. Our study highlights the significance of basis factors in

the modern context, despite the evolution of database system architecture and hardware

capabilities.

2.3 High-Contention Optimizations

Our commit-time update and timestamp splitting optimizations have extensive precur-

sors in other work. They derive from the same intuition as many existing work that con-

currency control conflicts in database workloads can be alleviated if the system has a more

granular understanding of the workload.

Timestamp splitting resembles row splitting, or vertical partitioning [44], which splits

records based on workload characteristics to optimize I/O. Taken to an extreme, row

splitting leads to column stores [34, 52] or attribute-level locking [38]. Column fami-

lies [11], which are very similar to timestamp splitting, are already supported by com-

mercial database systems. The goal in these systems are mainly to reduce data movement

and copying overhead when accessing large rows. We show that timestamp splitting, espe-

cially when combined with commit-time update, achieves significant concurrency control

performance benefits that have not been demonstrated before.

Commit-time updates share insight with existing, decade-old techniques such as Fast

Path [22] and Escrow Transactions [45] that for certain updates, locks (or observations of

concurrency control timestamps) need not be held for the duration of the transaction. While

based on similar observations, our application of commit-time updates in the context of

modern in-memory database implementations, especially in modern MVCC implementa-

tions, is new. Our work also quantitatively demonstrated that the performance benefits to

14

be gained by revisiting these decade-old ideas are greater than those achieved by recent

concurrency control innovations alone. We also discover an interesting synergy between

our two optimizations, showing that granularity improvements such as timestamp splitting

can expose more opportunities for commit-time updates to take advantage of blind write

semantics.

Commutativity has long been used to improve concurrency in databases, file systems,

and distributed systems [3, 32, 43, 49, 50, 61], with similar effects on concurrency control

as commit-time updates. We know of no other work that applies commutativity or commit-

time updates to MVCC records, though many systems reason about the commutativity

properties of modifications to MVCC indexes. Upserts in BetrFS [28, §2.2] resemble how

we encode commit-time updates; they are used to avoid expensive key-value lookups in

lower-layer LSMs rather than for conflict reduction. Differential techniques used in col-

umn store databases [25] involve techniques and data structures that resemble commit-time

updates, though their goal is to reduce I/O bandwidth usage in an read-mostly OLAP sys-

tem.

2.4 Transactional Memory

Extensive experience with transactional system implementation is also found in the

software transactional memory space [14,17,26]; there are even multiversion STMs [9,21].

Efficient STMs can run main-memory database workloads, and we base our platform on

one such system, STO [27]. Some of our baseline choices were inspired by prior STM work,

such as SwissTM’s contention regulation [17]. STO’s type-aware concurrency control in-

cluded preliminary support for commit-time updates and timestamp splitting, but only for

OCC.

STO has also been used as a baseline for other systems that address OCC’s problems

15

on high-contention workloads, such as DRP [42]. DRP effectively changes large portions

of OCC transactions into commit-time updates by using lazy evaluation, automatically im-

plemented by C++ operator overloading, to move most computation into OCC’s commit

phase. This works well at high contention, but imposes additional runtime overhead that

our simpler implementation avoids.

Several systems have achieved benefits by augmenting software CC mechanisms with

hardware transactional memory (HTM) [35, 59, 60]. HTM can also be used to implement

efficient deadlock avoidance as an alternative to bounded spinning [59].

16

Chapter 3

STOv2 System Description

3.1 The STO Software Transactional Memory Framework

STO [27] is a novel software transactional memory framework. Like conventional trans-

actional memory systems, STO uses OCC. Unlike conventional transactional memory sys-

tems that track untyped memory reads and writes, STO uses the concept of transactional

datatypes, which allows objects to interact with the transactional memory system in type-

specific ways. STOv2 is built on top of STO’s transactional datatype interface to support

fast main-memory transactions. While STO has many novel features as a software trans-

actional memory system, we only describe the features relevant to understanding STOv2

here.

Transactions in STO execute in two phases: the execution phase and the commit phase.

During the execution phase, the transaction executes application logic and collects transac-

tion tracking set entries. The commit phase executes a commit protocol that validates the

transaction tracking set and applies updates.

Transactional datatypes in STO interact with the system in two ways, one for each of

the phases described above.

17

First, each transactional datatype implements a number of transactional methods, which

are used in the execution phase. Each transactional method calls STO interface methods to

register tracking set items with STO. Most datatypes use logical or abstract tracking set

items representing the “intent” of the transactional method. For example, in a transactional

set implemented as a self-balancing binary search tree, the transactional find() method

registers only the node containing the matching value, instead of the whole path from the

root node to the aforementioned node (as a conventional software transactional memory

does), with STO.

Second, each datatype supplies a set of callbacks with STO to be used in the commit

protocol. STO’s commit protocol is further divided into three phases. In Phase 1, STO locks

all entries in the write set. In Phase 2, STO validates entries in the read set, aborting on

any validation failure. In Phase 3, STO makes updates visible by installing entries in the

write set, and release all locks. Callbacks supplied by datatypes allow each datatype to over-

ride the meanings of “lock”, “validate”, and “install” operations to suit its unique needs.

The overriding of the “install” operation is particularly interesting, as it allows performing

complex operations while transaction locks are held for the underlying records being up-

dated. We use this feature to implement commit-time updates, one of our high contention

optimization techniques, in STOv2.

3.2 STOv2 Main-memory Database

STOv2 is a main-memory database engine built on top of STO. While STO supports a

variety of transactional datatypes such as maps and queues to support generic programming,

STOv2 focuses on the most important datatype in database workloads: database tables.

Database tables in STOv2 are essentially transactional key-value stores in STO. The

keys are just primary keys to the table, and the values are table rows, or records. STOv2 sup-

18

Worker 1 Worker 2 Worker 3· · · · · ·

Concurrent Masstree

Leaf

R
ec

or
dP

tr
R

ec
or

dP
tr

R
ec

or
dP

tr
R

ec
or

dP
tr

Ti
m

es
ta

m
p

· · ·

R
ec

or
dP

tr Leaf
· · ·

Figure 3.1: Key-record mapping in STOv2 ordered tables.

ports ordered and unordered tables. Ordered tables map keys to values using Masstree [39],

a highly-concurrent B-tree variant that adopts some aspects of tries. Unordered tables map

keys to values using a separate-chaining hash table. Only ordered tables support range

scans. Secondary indexes are simply implemented as ordered tables.

STOv2 also re-engineered STO to support a variety of concurrency control algorithms.

We focus on three concurrency control variants in this work: OSTO, the OCC variant;

TSTO, the TicToc [64] OCC variant; and MSTO, the MVCC variant. Figure 3.1 illustrates

the system architecture, showing how ordered tables map keys to database record struc-

tures.

Transactions in STOv2 are written as C++ programs that directly operate on objects

representing database tables and records.

3.2.1 Phantom protection

Ordered tables in STOv2 support phantom protection when handling scans. Phantom

protection guarantees that in additional to values of records visited, any key gaps en-

19

Lock Timestamp Key Value

Figure 3.2: Record structure in OSTO and TSTO.

countered during scans are also kept transactionally consistent. This avoids “phantoms”

– records that do not show up during the first scan but appear during a subsequent scan in

the same transaction. STOv2 implements a tree-node-based optimistic phantom protection

strategy first introduced in Silo [56]. STOv2 tracks key gaps by observing (i.e. adding to the

read set) a timestamp embedded within a Masstree (leaf) node as a proxy for the set of keys

contained in the node. Every time a key is added to or removed from the tree, the affected

leaf nodes’ timestamps are updated. At commit time, these node timestamps are automat-

ically validated as part of the read set, preventing transactions having observed phantoms

from committing.

This phantom protection strategy is shared by all three concurrency control variants

presented in this study: OSTO, TSTO, and MSTO.

3.2.2 OSTO

OSTO, the OCC variant, follows the 3-phase STO commit protocol described in § 3.1.

OSTO aims to avoid memory contention except as required by workloads. For instance,

it chooses transaction timestamps in a scalable way (as in Silo) and avoids references to

modifiable global state. A OSTO record structure contains a full value of the record and

a concurrency control timestamp. A copy of the key is also stored so that the full key is

readily available within the record itself, without having to reconstruct the key from the

Masstree path. Figure 3.2 illustrates OSTO record structures.

20

x

y

t1 writes x = 4

t2 writes y = 42t2 reads x = 3

t1 commits

t2 commits

Figure 3.3: Although t2 finishes later in time, it can still commit if placed earlier than t1
in the serial order. OCC will abort t2; MVCC and TicToc can commit it.

· · · Version 3
wts = 7

rts ∈ [7, ...)

Version 2
wts = 3

rts ∈ [3,7)

Version 1
wts = 1

rts ∈ [1,3)

· · ·

Figure 3.4: MVCC version chain structure, with the visible range (in terms of rts) shown
below each version.

3.2.3 MSTO

MSTO is an MVCC variant based broadly on Cicada [37], though it lacks some of

Cicada’s advanced features and optimizations. MSTO maintains multiple versions of each

record and transactions can access recent-past states as well as present states. Read-only

transactions can thus always execute conflict-free, since MSTO effectively maintains con-

sistent database snapshots for all recent timestamps. MVCC can additionally commit read-

/write transactions in schedules that OCC and OSTO cannot, such as the one in Figure 3.3.

However, these benefits come at the cost of memory usage, which increases memory allo-

cation and garbage collection overhead and adds pressure on processor caches. MSTO also

invokes atomic memory operations more frequently than OSTO.

MSTO, like OSTO, uses indexes to map primary keys to records, but rather than storing

data directly in records, it introduces a layer of indirection called the version chain. Each

version in the version chain is tagged a write timestamp, indicating the creation time of

the version. When chained together, the write timestamps implicitly convey a visible time

range for each version in the version chain. In general, a version is visible from its creation

21

Record Key Head version Inlined version
COMMITTED

Version
chain

Version
PENDING

Version
COMMITTED

Version
ABORTED

(a) Record structure in MSTO. The record contains a pointer to the head of the version chain,
which may include the inlined version.

Write
timestamp

Read
timestamp

State Value

(b) Version chain element in MSTO.

Figure 3.5: Record structure and in MSTO.

time up to, but not including, the creation time of the next newer version in the chain. See

Figure 3.4 for an illustration.

A record in MSTO consists of a key and a pointer to the most recent version, or head

version, in the chain. Each version carries a write timestamp, a read timestamp, and a

state, as well as the record data and a chain pointer that points to the previous version in

chronological order. The write timestamp is the timestamp of the transaction that created

the version; it is analogous to an OSTO record’s timestamp. The read timestamp is the

timestamp of the most recent transaction that observed the version. It is only safe to commit

a new version (i.e. to insert an preceding version to the version chain) if the overwriting

version’s write timestamp is higher the read timestamp of the overwritten version. This

ensures that no committed observations are invalidated after the new version is installed.

As in traditional MVCC version chains, the chain is sorted by the write timestamps of

versions: a valid chain vn, . . . ,v1 with latest version vn will have rtsi ≥ wtsi, wtsi+1 ≥ rtsi,

and wtsi+1 > wtsi for all i. Figure 3.5 illustrates MSTO records and their version chain

element structure.

Before initiating a transaction, MSTO assigns an execution timestamp tsth used for all

22

observations during the execution phase. For transactions identified in advance as read-only,

tsth = rtsg; otherwise, tsth = wtsg. rtsg is advanced periodically by aggregating all threads’

most recent commit timestamps to ensure that all future read/write transactions will have

greater timestamps. This makes read-only transactions read from a recent snapshot of the

database, allowing them to skip the commit phase entirely after the execution phase.

MSTO adapts Cicada’s commit protocol to fit the three-phase commit protocol in STO.

Cicada’s commit protocol is slightly different from traditional MVCC. Cicada does not use

traditional locks when installing a new version to the version chain. Instead, it inserts a

tentative version, called a PENDING version, to the version chain in a lock-free way at the

beginning of the commit protocol. Since the transaction is not guaranteed to commit by the

time the PENDING version is inserted, concurrent readers observing this version will wait

until the version resolves into a non-pending state. If the transaction aborts, the version

resolves to an ABORTED state and the concurrent reader would skip the version to continue

its search. If the transaction succeeds, the version resolves to a COMMITTED state and the

reader can return the value stored in the version. The atomic installation of PENDING ver-

sions make Cicada more efficient than traditional MVCC in write-heavy workloads as it

does not need to handle deadlocks.

During commit, MSTO first chooses a commit timestamp with an atomic increment on

the global write timestamp, tsthc := wtsg++. Then, in Phase 1, MSTO atomically inserts a

new PENDING version with tsthc into each modified record’s version chain, ensuring that the

chains maintain the prescribed timestamp order. Irreconcilable conflicts detected in Phase 1

cause an abort. (Concurrent transactions that access a PENDING version in their execution

phase will spin-wait until the state changes.) In Phase 2, MSTO checks the read set: if

any version visible at tsthc differs from the version observed at tsth, the transaction aborts;

otherwise, MSTO atomically updates the read timestamp on each version v in the read set

to v.rts := max{v.rts, tsthc}. Finally, in Phase 3, MSTO changes its PENDING versions

23

T1:

read Record A

write Record B

T2:

write Record A

Figure 3.6: A transaction interleaving that is allowed in TicToc but not in plain OCC.

to be COMMITTED and enqueues earlier versions for garbage collection. If a transaction is

aborted, its PENDING versions are changed to ABORTED instead. The commit protocol is

used only for read/write transactions; read-only transactions skip the commit protocol.

The commit protocol in MSTO/Cicada has the unique property that the atomic inser-

tions of PENDING versions, which occurs during the lock phase of the 3-phase STO commit

protocol, are completely lock-free. This make deadlock avoidance irrelevant in MSTO, and

makes MSTO highly efficient in workloads with high degrees of write-write contention, as

we will see later in Chapter 6.

MSTO incorporates one important Cicada optimization, namely inlined versions. One

version can be stored inline with the record. This reduces memory indirections, and there-

fore cache misses, for values that change infrequently. MSTO fills the inline version slot

when it is empty or has been garbage collected (we do not implement Cicada’s promotion

optimization [37, §3.3]).

3.2.4 TSTO

TSTO is an OSTO variant that uses TicToc [64] in place of plain OCC as the concur-

rency control mechanism.

TicToc is built on the observation that some transaction OCC decides to abort actually

does not need to be aborted. Consider two transactions interleaved as shown in Figure 3.6.

Under plain OCC, T1 has to abort because its commit-time validation will detect record A

24

has been modified. However, the two transactions can both commit and the end result is

still serializable: T2 can serialize after T1.

TicToc captures this by dynamically computing the commit timestamp, which indicates

serialization time, using the read and write timestamps of the records a transaction accesses.

The commit timestamp is computed to be higher than or equal to any such write timestamps,

and strictly higher than read timestamps of items in the write set. In the example in Fig-

ure 3.6, TicToc will assign a lower commit timestamp for T1 between the two transactions.

The commit protocol then extends all the read timestamps of observed records to the com-

mit timestamp. The read timestamps function similarly to those in MSTO–they prevent

concurrent updates from retroactively invalidating a committed read. TicToc ensures that

such concurrent updates do not succeed by involving the read timestamps of write set en-

tries in the computation of the commit timestamp, making sure the commit timestamp must

be strictly higher than any such read timestamp. When the computed commit timestamp is

higher than the observed read timestamp of a record in the read set, TicToc performs an

OCC-style validation on the record to make sure the write timestamp of the record has not

changed, and aborts the transaction otherwise.

Compared to plain OCC, TicToc allows for more flexible transaction schedules at the

cost of more complex timestamp management. Specifically, during the validation step, Tic-

Toc has to atomically extend the read timestamps of the records it has observed to the

computed commit timestamp of the transaction, which causes read operations to also write

to shared memory. Compared to MVCC, however, it is simpler in that it requires no global

timestamp coordination and only stores the most recent version of a record to avoid version

chain complexities.

Except for concurrency control, TSTO and OSTO share the identical infrastructure.1

1TicToc requires special care to support full phantom protection. We discuss the cost of full phantom
protection in TicToc in Chapter 7.

25

TSTO uses the same record structure as OSTO in Figure 3.2, except that the timestamp is

now a two-part TicToc timestamp instead of a single OCC timestamp. We do not use the

TicToc delta-rts encoding [64, §3.6], which we found to lead to false aborts in read-heavy

workloads; instead, we use separate, full 64-bit words for the read and write timestamps.

The false aborts occur because the delta encoding uses only 15 bits to encode the distance

between the read and write timestamps of a record, so that the two timestamps can fit

in a single 64-bit word for atomic operations. Because the read timestamp is extended

every time a record goes through read set validation, the distance between read and write

timestamps for frequently-read records can grow beyond what the 15-bit delta field can

represent. TicToc’s delta encoding preserves correctness in this case by overflowing the

delta field into the write timestamp, inducing (false) validation failures and transaction

aborts while preserving correctness. We find that it is not necessary to fit both timestamps

in a 64-bit word for correct atomic operation, and using full 64-bit words for read and write

timestamps is fine provided that the read timestamp is always accessed before the write

timestamp. On x86-TSO machines, this can be easily achieved using a compiler fence.

3.2.5 Garbage collection

STOv2 uses a epoch-based garbage collection mechanism for all three concurrency

control variants. The mechanism is similar to the garbage collection algorithm used in

read-copy-update (RCU) [40] but with modifications adapting it for use in MVCC systems.

In OSTO and TSTO, deleted objects cannot be immediately deallocated (i.e. returned to

the allocator or the operating system) because concurrent transactions could still be access-

ing them. Each thread therefore marks an object for deallocation at some point in the future

and defers the actual deallocation until that time. In MSTO, garbage collection is even more

crucial, because without it the version chains would grow indefinitely and quickly exhaust

26

Epoch Name Definition
Global write weg Periodically incremented

Thread-local write weth Per-thread snapshot of weg;
used to mark objects for deletion

Global read reg < min
th

weth

Thread-local read reth Per-thread snapshot of reg

Global GC gce < min
th

reth

Table 3.1: Garbage-collection-related epochs in STOv2. For any thread th and at all
times, weg ≥ weth > reg ≥ reth > gce.

all memory.

We made the observation that the same idea applies to garbage collection in all three

concurrency control mechanisms, so the three concurrency control variants in STOv2 can

share the same garbage collection mechanism. Despite differences in concurrency control

mechanisms, all garbage collection mechanisms achieve the same goal – assigning every

object marked for deletion expiration times after which it is safe to physically deallocate

the object.

STOv2’s common garbage collection mechanism operates on a set of coarse-grained

epochs listed in Table 3.1. An epoch advancer thread runs in the background, periodically

incrementing the global write epoch (weg). This thread runs rather infrequently (about only

once every millisecond), so the epochs are coarse-grained. Every transaction thread, before

transaction start, takes a snapshot of the global write epoch and stores it as a thread-local

write epoch (weth). This is also the epoch a transaction uses to mark objects for deletion.

The epoch advancer thread also periodically scans the weth values in all threads and

computes a minimum, storing it as the global read epoch (reg). Upon transaction start every

transaction thread also takes a snapshot of the global read epoch, storing it as the thread-

local read epoch (reth). The global garbage collection (GC) epoch (gce) is then computed

as the minimum of all thread-local global read epochs, also by the epoch advancer thread

27

by scanning all thread-local read epochs periodically. All these timestamps increase only

monotonically every time the epoch advancer thread runs.

Transaction threads mark objects for deletion by putting them onto a per-thread garbage

collection queue. As mentioned earlier, every object marked for deletion is tagged with the

thread-local write epoch (weth) at the time the object is put on to the garbage collection

queue. This marks the expiration time of the object. Between transactions, the transaction

thread runs a maintenance function that checks this queue and deallocates any object in the

garbage collection queue that is safe to delete. It is safe to deallocate an object only after

the global garbage collection epoch advances beyond (strictly greater than) the expiration

time with which the object is tagged.

Correctness analysis for OSTO and TSTO

We now demonstrate the correctness of the garbage collection mechanism in OSTO and

TSTO using the following logical analysis. In OSTO and TSTO, an object is deleted by a

transaction only after it is physically “unlinked” from a shared transactional data structure.

This means after the transactional deletion occurs, future transactions can no longer reach

the object being deleted. Garbage collection then just needs to make sure that all concurrent

transactions that could potentially hold references to the deleted object finish before physi-

cally deleting the object. By the time the global garbage collection epoch advances beyond

the thread-local write epoch (we) at the time of deletion, all threads must have thread-local

write epochs greater than we (see the epoch invariant in Table 3.1). This that means all

transactions currently active in the system are now running after the deleted object was

physically unlinked from shared data structure, so it is safe to physically delete the object.

Note that in OSTO and TSTO, we could have simply used the global read epoch (reg)

as the garbage collection epoch, making the mechanism identical to the one in RCU. The

current mechanism is therefore more conservative than necessary. We need the global read

28

epoch to GC epoch indirection for correct garbage collection in MSTO, and we decided to

keep the same mechanism for OSTO and TSTO.

Correctness analysis for MSTO

Garbage collection is slightly more complicated in MVCC, because old versions are

never explicitly deleted from MVCC version chains. Instead of being explicitly deleted, an

old versions quietly expires once no future transactions will read that version. In practice,

it means that all reads from future transactions will be caught by a newer version.

To achieve this, we mark old versions for deletion when a new, committed version is

installed. The global write epoch (weg) at the time the new version is installed is used to

mark the expiration time of the old version. Unlike in OSTO and TSTO, we must use an

extra indirection involving aggregating all thread-local read epochs to compute the global

garbage collection epoch (gce). This is due to the fact that read-only transactions in MSTO

run in the recent past at timestamp rtsg (see § 3.2.3).

Once gce advances beyond the expiration time of an old version, all active transactions

in the system, including read-only ones, must be running with reth values greater than

the expiration time of the old version, which is the weth value when the newer version is

installed. This in turn means that all transactions are now executing with read timestamps

greater than the write timestamp of the new version, therefore all reads will be caught by

the new version.

This setup allows the version chain to contain dangling pointers (i.e. pointers pointing to

expired old versions). As a result there is no need to scrub pointers when garbage-collecting

old versions. Since all transactional reads will be caught by newer versions, the dangling

pointers are guaranteed to never be dereferenced.

29

3.2.6 Deletes in MSTO

Deletes in MSTO are tricky because in a multi-version system, a delete should not

physically unlink a record from the index until no transactions are executing at a timestamp

before the record has been deleted. One way to achieve this is to never physically unlink any

records – any records that ever existed in the system will be preserved. While this works,

it creates the problem that a range scan may need to skip through a potentially unbounded

number of logically deleted records.

MSTO addresses this “multi-version deletion” problem by lazily cleaning up unneeded

records. This cleanup is executed by the garbage collection mechanism. Installation of

a version with a “deleted” status enqueues a garbage collection callback that is invoked

when the version immediately older than the deleted version expires. When the callback

executes, it 1) searches the index structure to check whether the deleted version is the only

unexpired version in the version chain of the record, and 2) if true, physically unlinks the

record from the index structure. The two steps above are executed as a critical section using

Masstree’s internal locking to ensure their correctness with respect to concurrent Masstree

inserts, deletes, and lookups.

30

Chapter 4

Experiment Setup

We demonstrate our findings by measuring the throughput of our database system using

a suite of benchmarks. These benchmarks are shared in the evaluation of both our baseline

system in Chapter 5 and the optimized system in Chapter 6. We use this brief chapter to

describe the experimental platform and benchmarks we used to conduct these experiments.

4.1 Experiment Setup

We conduct our experiments on Amazon EC2 m4.16xlarge dedicated instances, each

powered by a pair of Intel Xeon E5-2686 v4 CPUs clocked at 2.30 GHz. Each machine

is equipped with 32 CPU cores (64 hyperthreads) and 256GB of RAM, evenly distributed

across two NUMA nodes. Medians of 5 runs are reported with minimum and maximum

values shown as error bars. Some results show little variation, so error bars are not always

visible. In all experiments, aborted transactions are automatically retried on the same thread

until they commit successfully.

31

4.2 Workloads

We measure two standard benchmarks, YCSB (A and B) [12] and TPC-C [54], with

high and low contention settings. We also measure two additional high-contention work-

loads modeled after Wikipedia and RUBiS.

The TPC-C benchmark models an inventory management workload. We implement

the full mix and report the total number of transactions committed per second across all

transaction types, including 45% new-order transactions. As required by the TPC-C spec-

ification, we implement a queue per warehouse for delivery transactions, and assign one

thread per warehouse to preferentially execute from this queue. (“[T]he Delivery transac-

tion must be executed in deferred mode . . . by queuing the transaction for deferred execu-

tion” [55, §2.7].) Delivery transactions for the same warehouse always conflict, so there

is no point in trying to execute them in parallel on different cores. TPC-C contention is

controlled by varying the number of warehouses. With one warehouse per worker thread,

contention is relatively rare (cross-warehouse transactions still introduce some conflicts);

when many threads access one warehouse, many transactions conflict. We enable Silo’s fast

order-ID optimization [56], which reduces unnecessary conflicts between new-order trans-

actions. For tables that are insert-only in the workload (e.g. the HISTORY table), we generate

unique primary keys for each new row locally on each thread to reduce contention on the

right-most leaf node of the table. We implement contention-aware range indexes (§ 5.1.5)

and use hash tables to implement indexes that are never range-scanned. On MVCC systems

(MSTO and Cicada), we run read-only TPC-C transactions slightly in the past, allowing

them to commit with no conflict every time.

YCSB models key-value store workloads; YCSB-A is update-heavy, while YCSB-B is

read-heavy. YCSB contention is controlled by a skew parameter. We set this relatively high,

resulting in high contention on YCSB-A and moderate contention on YCSB-B (the bench-

32

mark is read-heavy, so most shared accesses do not cause conflicts). All YCSB indexes use

hash tables.

Our Wikipedia workload is modeled after OLTP-bench [15]. Our RUBiS workload is

the core bidding component of the RUBiS benchmark [46], which models an online auction

site. Both benchmarks are naturally highly contended. Whenever necessary, indexes use

Masstree to support range queries.

We also evaluate the TPC-C benchmarks in other implementations, specifically Cicada,

MOCC, and ERMIA. All systems use Silo’s fast order-ID optimization (we enabled it when

present and implemented it when not present). We modified Cicada to support delivery

queuing, but did not modify MOCC or ERMIA.

33

Chapter 5

Understanding Baseline Performance

5.1 Basis Factors

Main-memory transaction processing systems differ in concurrency control algorithms,

but also often differ in implementation choices such as memory allocation, index types, and

backoff strategy. In years of running experiments on such systems, we have developed a list

of basis factors, which are design choices that can have significant impact on performance.

This section describes the basis factors we have found most impactful. For instance, OCC’s

contention collapse on TPC-C stems from particular basis factor choices, but not inherent

limitations of the concurrency control algorithm. We describe the factors, suggest a spe-

cific choice for each factor that performs well, and conduct experiments using both high-

and low-contention TPC-C to show their effects on performance. We end the section by

describing how other systems implement the factors, calling out important divergences.

Figure 5.1 shows an overview of our results for OSTO, which is our focus in this section.

The heavy line represents the OSTO baseline in which all basis factors are implemented

according to our guidelines. In every other line, a single factor’s implementation is replaced

with a different choice taken from previous work. The impact of the factors varies, but on

34

high-contention TPC-C, four factors have 20% or more impact on performance, and one

factor can cause collapse. We will show in Chapter 7 that the lack of contention regulation

combined with an additional point of contention in the benchmark also leads to surprising

performance collapses. In TSTO and MSTO, the basis factors have similar impact, except

that memory allocation in MSTO has larger impact due to multi-version updates. We omit

these results to avoid repetition.

5.1.1 Contention regulation

Contention regulation mechanisms in transaction processing systems, especially those

with OCC-like concurrency control algorithms, increase the chance of forward progress

in highly contended workloads. They help prevent live lock and starvation situations due

to repeated conflicts and retries. Contention regulation can be implemented at different

levels in a transaction-processing system. At a low level, locks may implement contention

regulation by backing off after a failed compare-and-swap to avoid repeated cache line

invalidations. At a higher level, contention regulation mechanisms may inject a delay before

retrying a transaction that repeatedly aborts.

We focus on contention regulation at the transaction level. Figuring out the right amount

of delay before retrying the aborted transaction (due to conflict) is critical. Over-eager retry

leads to excessive cache line bouncing and even contention collapse; over-delayed retry

wastes system resources by leaving cores idle. We recommend randomized exponential

backoff as a baseline for contention regulation. This is not optimal at all contention levels

– under medium contention, it can cause some idleness – but as with spinlock implemen-

tations [41] and network congestion [1], exponential backoff balances quick retry at low

contention with low invalidation overhead at high contention.

The “No contention regulation” lines in Figure 5.1 show OSTO performance with no

35

0 10 20 30 40 50 60
threads

0.0

0.1

0.2

0.3

0.4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

OSTO Baseline
No contention
regulation
Slow allocator

(a) One warehouse (high contention).

0 10 20 30 40 50 60
threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

) Inefficient aborts
No hash indexes

(b) One warehouse per worker (low contention).

Figure 5.1: OSTO throughput under TPC-C full-mix showing impact of basis factors.
Factor optimizations are individually turned off from the optimized baseline to demon-
strate the capping effect of each factor.

backoff before retrying aborted transactions. Lack of contention regulation leads to perfor-

mance collapse as contention gets extreme, as demonstrated by the sharp drop in perfor-

mance from 12 to 24 threads in Figure 5.1a. It is worth noting that Silo [56], a popular

system frequently regarded as a state-of-the-art OCC implementation in performance stud-

36

ies, disables backoff by default. Silo supports exponential backoff through configuration,

but some comparisons using Silo have explicitly disabled that backoff, citing (mild) over-

heads at medium contention [36]. This is an unfortunate choice for evaluations including

high-contention experiments.

5.1.2 Memory allocation

Transactional systems stress memory allocation by allocating and freeing many records

and index structures. This is particularly relevant for MVCC systems, where every update

allocates memory to preserve old versions. Memory allocators can impose hidden addi-

tional contention (on memory pools) as well as other overheads, such as TLB pressure and

memory being returned prematurely to the operating system. We recommend using a fast

general-purpose scalable memory allocator as a baseline, and have experienced good re-

sults with rpmalloc [47]. A special-purpose allocator could potentially perform even better,

and Cicada and other systems implement their own allocators. However, scalable allocators

are complex in their own right, and we found bugs in some systems’ allocators that hob-

bled performance at high core counts (§ 5.2.3). In our experience scalable general-purpose

allocators are now fast enough for use in high-performance transactional software. Some

systems, such as DBx1000, reduce allocator overhead to zero by preallocating all record

and index memory before experiments begin. We believe this form of preallocation changes

system dynamics significantly – for instance, preallocated indexes never change size and

are never inserted into – and should be avoided.

The “Slow allocator” lines in Figure 5.1 show OSTO performance using the default

glibc memory allocator. Silo uses the system default allocator [56], though it can be con-

figured to use other general-purpose allocators that are malloc-compatible. OSTO with

rpmalloc performs 1.5× better at high contention, and at low contention the glibc allocator

37

becomes a bottleneck and stops the system from scaling altogether.

5.1.3 Abort mechanism

High-contention workloads stress abort mechanisms in transaction processing systems

due to the high rate of aborts occurring in the system. High abort rates do not necessarily

correspond to lower throughput on modern systems, and in particular, reducing abort rates

does not always improve performance. We find this to be true both in our experience (see

Chapter 7) and in prior work [37]. However, some abort mechanisms impose surprising

overheads. C++ exceptions – a tempting abort mechanism for programmability reasons

– can acquire a global lock in certain language runtime implementations (the default C++

runtime on many GNU Linux operating systems has this problem). This protects exception-

handling data structures from concurrent modification by the dynamic linker. When using

C++ exceptions to handle aborts, this lock becomes a central point of contention for all

aborted transactions.

We are not implying that certain operating systems have bad language runtime imple-

mentations. This is more of a misuse of language features by transaction processing system

designers. Exceptions, by definition, are supposed to be rare occurrences, therefore the

language runtime focuses on making the non-exception common path fast at the cost of

a slower exception path. To avoid such hidden overheads imposed by the language run-

time, we recommend implementing aborts using explicitly-checked return values. In our

implementation, all transactional operations that can abort return a boolean value indicat-

ing whether an abort needs to occur.

The “Inefficient aborts” lines in Figure 5.1a show OSTO performance using C++ ex-

ceptions for aborts. Original STO, Silo, and ERMIA all abort using exceptions. Fast abort

support offers 1.2–1.5× higher throughput at high contention.

38

5.1.4 Index types

Index types refer to the types of data structures used to implement database tables or

indexes. Systems typically choose from two types of data structures, ordered and unordered,

to implement database tables based on workload needs. Ordered data structures are usually

tree-like and support efficient range scans, while unordered data structures rely on pseudo-

random hashes to support fast point queries.

In terms of functionality, ordered data structures form a superset of unordered data

structures, and many databases simply use ordered data structures for all tables and indexes

to simplify implementation. Silo, for instance, uses Masstree [39], a B-tree-like structure,

to implement all tables. Most TPC-C implementations we have examined use unordered

data structures, or hash tables more specifically, for indexes unused in range queries. Some

implementations use hash tables for all indexes and implement complex workarounds for

range queries [63]. Hash tables offer O(1) access time where ordered trees offer O(logN),

and a hash table can perform 2.5× or more operations per second than a B-tree even for a

relatively easy workload. We recommend using hash tables to implement database indexes

when the workload allows it, and ordered (B-tree) indexes elsewhere.

The “No hash index” lines in Figure 5.1 show OSTO performance when all indexes

use Masstree, whether or not range scans are required. Silo and ERMIA lack hash table

support. Hash index support offers 1.2× higher throughput at any contention level; this

is less than 2.5×, because data structure lookups are not the dominant factor in TPC-C

transaction execution.

5.1.5 Contention-aware indexes

We discovered an interesting instance of index contention in TPC-C that does not

greatly affect the overall throughput, but can cause starvation of certain classes of trans-

39

→ range scan→ · · ·

leaf node

wid
1

did
1

oid
999

wid
1

did
2

oid
1ins

er
t scan start

Figure 5.2: Example illustrating index contention on the TPC-C NEW ORDER table. An
insert to the end of one district in new-order can conflict with a range scan in delivery on
the adjacent district.

actions. The contention stems from disjoint ranges false-sharing of B-tree leaf nodes in

secondary indexes.

The NEW ORDER table in the TPC-C benchmark is keyed by 〈wid,did,oid〉, a combina-

tion of warehouse ID, district ID, and order ID. The new-order transaction inserts records

at the end of a 〈wid,did〉 range, while the delivery transaction scans a 〈wid,did〉 range

from its beginning. This workload appears naturally partitionable: new-order and delivery

transactions operating on distinct 〈wid,did〉 pairs need not conflict.

This is, however, not the case in some index implementations. An index may choose

to treat the whole 〈wid,did,oid〉 tuple as an opaque unit, and as a result a district bound-

ary is likely to fall within a B-tree leaf node. For example, 〈wid=1,did=1,oid=999〉 and

〈wid=1,did=2,oid=1〉 are consecutive in the key space, and they are likely to reside in the

same B-tree leaf node. If this occurs, the tree-node-timestamp-based phantom protection

(described in § 3.2.1) will cause new-order transactions on the earlier district and delivery

transactions on the later district to appear to conflict, inducing aborts in delivery and even

starving it. See Figure 5.2 for an illustration of this scenario.

We recommend implementing contention-aware indexing: indexes that are not suscep-

tible to the aforementioned false sharing problem. This can be done either automatically

or by taking advantage of static workload properties. Our baselines implement contention-

aware indexing by leveraging a side effect of Masstree’s trie-like structure [39, §4.1]. Cer-

tain key ranges in Masstree will never cause phantom-protection conflicts. As illustrated in

40

Layers 1+2

Layer 3

〈1,1, · · ·〉 〈1,2, · · ·〉

· · · · · · 〈1,1,999〉 · · · · · ·〈1,2,1〉

Figure 5.3: Contention-aware index routes keys with distinct prefixes to different leaves.

Figure 5.3, by representing a 〈wid,did〉 pair using a multiple of 8 bytes, keys with differ-

ent 〈wid,did〉 prefixes are routed to different B-trees in the bottom layer, guaranteeing that

these keys never share leaf nodes. Scans of all orders within a 〈wid,did〉 range thus never

conflict with inserts or deletes into any other range. To implement contention-aware index-

ing, we reserve eight bytes for each key component in a multi-key index, which maps each

key component to distinct layers of B-trees. This technique avoids the index contention at

the cost of larger key size (24 bytes instead of 8 bytes).

Figure 5.4a shows the impact of contention-aware indexes on delivery transactions in

high contention TPC-C. When not using contention-aware indexes (the “Index contention”

line in the figure), delivery transactions almost completely starve at high contention. This

starvation is similar to the OCC performance collapse under high contention reported in

prior work [37]. When executing delivery transactions in deferred mode, as required by

the TPC-C specification, this starvation of delivery transactions may not actually lead to a

collapse in overall transaction throughput, because other transactions can still proceed as

normal while delivery transactions are being starved in the background.

The larger key size in our contention-aware indexes adds negligible performance over-

head under low contention, as shown in the results in Figure 5.4b.

41

0 10 20 30 40 50 60
threads

0

5

10

15

Th
ro

ug
hp

ut
 (K

tx
ns

/s
ec

)

OSTO
Index contention

(a) One warehouse (high contention).

0 10 20 30 40 50 60
threads

0

50

100

150

Th
ro

ug
hp

ut
 (K

tx
ns

/s
ec

) OSTO
Index contention

(b) One warehouse per worker (low contention).

Figure 5.4: Throughput of delivery transactions with and without contention-aware in-
dexes. Showing OSTO results with TPC-C full mix.

5.1.6 Other factors

Other basis factors like transaction internals and deadlock avoidance have visible but

more limited impact.

Transaction internals refers to the mechanisms for maintaining transaction tracking

sets. These mechanisms are private to each transaction thread so they do not need to be

42

thread-safe, but they still need to be carefully engineered to ensure that they introduce

minimal overhead in serial execution because they sit on the critical path of every transac-

tional operation. Since optimistic transactions do not apply updates at execution time but

instead buffer them in the write sets, a later read from the same transaction may need to

search within the tracking set to return the buffered (or “correct”) result. To facilitate this

lookup, transaction tracking sets typically maintain internal state that maps the physical

in-memory location of a record to the corresponding tracking set entry. Good transaction

internals implement this as a fast and well-tuned hash table. We recommend strong transac-

tion internals by default, although the factors listed before have more performance impact.

Replacing STOv2’s highly-engineered internals with Cicada’s simpler internals reduced

performance by just 5%.

Transaction processing systems also need deadlock avoidance or detection strategies

as they can acquire more than one lock at the same time during the lock phase of the

commit protocol. Transactions can access records in arbitrary orders, but the locks must

be acquired according to the same order across all transactions to avoid deadlocks. Early

OCC database implementations achieve this by sorting their write sets according to some

global order [31,56,64]. In the context of main-memory databases, this sorting can be done

quickly by using the memory addresses of the corresponding records or data structure nodes

as sort keys. An alternative technique called bounded spinning is popular in transactional

memory systems. This technique attempts to acquire locks without sorting, but instead of

waiting indefinitely for the lock to become available, and then aborts the transaction at the

lock phase if it takes too long to acquire a lock in the write set, assuming that deadlock is

occurring. Our experience, as well as a prior study [59, §7.2], finds that write set sorting is

expensive and we recommend bounded spinning for deadlock avoidance. However, write

set sorting generally had relatively low impact (≈ 10%) in OLTP workloads as the write

sets are typically small. The exception was DBx1000 OCC [64], which prevents deadlock

43

System
Contention
regulation

Memory
allocation Aborts

Index
types

Transaction
internals

Deadlock
avoidance

Contention-
aware
index

Silo [56] −− −− −− − − + +

STO [27] −− −− −− + + + +

DBx1000 OCC [63] + N/A + + − −− −−
DBx1000 TicToc [64] + N/A + + − + −−
MOCC [57] N/A + + + + + −−
ERMIA [30] + + −− − + + +

Cicada [37] + + + + + N/A N/A
STOv2 (this work) + + + + + + +

Table 5.1: How comparison systems implement the basis factors described in § 5.1. On
high-contention TPC-C at 64 cores, “+” choices have at least 0.9× STOv2’s perfor-
mance, while “−” choices have 0.7–0.9× and “−−” choices have less than 0.7×.

using an unusually expensive form of write set sorting: comparisons use records’ primary

keys rather than their addresses, which causes many additional cache misses, and the sort

algorithm is O(n2) bubble sort. Write-set sorting took close to 30% of the total run time of

DBx1000’s “Silo” TPC-C under high contention.

5.1.7 Summary

Table 5.1 summarizes our investigation of basis factors by listing each factor and quali-

tatively evaluating 8 systems, including STOv2, according to their implementations of these

factors. We performed this evaluation through experiment and code analysis. Each system’s

choice is evaluated relative to STOv2’s and characterized as either good (“+”, achieving

at least 0.9× STOv2’s performance), poor (“−”, 0.7–0.9×), or very poor (“−−”, less than

0.7×).

5.2 Baseline Evaluation

Having implemented reasonable choices for the basis factors, we evaluate STOv2’s

three concurrency control mechanisms on our suite of benchmarks and at different conten-

44

tion levels. Our goal is to separate the performance impacts of concurrency control from

those of basis factors.

Prior work showed OCC performance collapsing at high contention on TPC-C, but our

findings are quite different. OSTO’s high-contention TPC-C throughput is approximately

0.6× that of MSTO, even at 64 threads. Neither system scales nor collapses. At low con-

tention, however, OSTO throughput is 1.9× that of MSTO. These results hold broadly for

our other benchmarks.

5.2.1 Overview

Figures 5.5 – 5.7 shows the transaction throughput of all three concurrency control

variants in STOv2 on our suite of benchmarks, and with thread counts varying from 1 to

64. The committed mix of transactions conforms to the TPC-C specification except in the

one-warehouse, high core count settings. (In OSTO at 64 threads, the warehouse delivery

thread mandated by the specification cannot quite reach 4% of the mix when 63 other

threads are performing transactions on the same warehouse; we observe 3.2%.) Perfect

scalability would show as a diagonal line through the origin and the data point at 1 thread.

Only low-contention benchmarks (TPC-C with one warehouse per worker, Figure 5.5b,

and YCSB-B, Figure 5.6b) approach perfect scalability. The change in slope in these scala-

bility graphs at 32 threads is due to hyperthreading (the machine has only 32 physical cores,

and beyond 32 threads it begins to utilize hyperthreads). On high-contention benchmarks,

each mechanism scales up to 4 or 8 threads, then levels off. Performance declines a bit as

thread counts further increase, but does not collapse.

When scalability is good, performance differences are due primarily to the inherent

overhead of each mechanism. In Figure 5.5b, for example, TSTO’s more complex time-

stamp management causes it to slightly underperform low-overhead OSTO, while MSTO’s

45

considerably more complex version chain limits its throughput to 0.52× that of OSTO.

Some of the high-contention benchmarks impose conflicts that affect all mechanisms

equally. For example, YCSB-A has fewer than 0.1% read-only transactions and high key

skew (many transactions touch the same keys). This prevents TicToc and MVCC from

discovering safe commit orders, so OSTO, TSTO, and MSTO all scale similarly, and

OSTO outperforms MSTO by 1.5–1.7× due to MSTO overhead (Figure 5.6a). On other

benchmarks, the mechanisms scale differently. For example, in high-contention TPC-C

(Figure 5.5a), OSTO levels off after 4 threads, while MSTO and TSTO scale well to 12

threads. This is due to OSTO observing more irreconcilable conflicts and aborting more

transactions, allowing MSTO to overcome its higher overhead and outperform OSTO. At

12 threads with 1 warehouse, 47% of new-order/payment transactions that successfully

commit in MSTO would have been aborted by an OCC-style timestamp validation.

In summary, we do not observe contention collapse in any concurrency control variant,

and our MVCC implementation has significant overhead relative to OCC at low contention

and even some high-contention scenarios. All these results differ from previous reports. We

do not claim that OCC will never collapse. It is easy to cause OCC contention collapse for

some transaction classes in a workload, such as by combining OLTP workloads with OLAP

ones, where MVCC could avoid collapse by executing analytical (often read-only) queries

in the recent past. However, we did find it striking that these important, real-world-inspired

benchmarks did not collapse, and that some of these benchmarks showed MVCC having

scaling behavior similar to OCC under contention.

Some differences from prior results are worth mentioning. Our YCSB-A results are

lower than those reported previously [37]. This can be attributed to our use of the YCSB-

mandated 1000-byte records; DBx1000 uses 100-byte records. Cicada’s reported results

for Silo and “Silo′” (DBx1000 Silo) show total or near performance collapse at high con-

tention, but our OCC measurements show no such collapse. We attribute this difference to

46

0 10 20 30 40 50 60
threads

0.0

0.2

0.4

0.6
Th

ro
ug

hp
ut

 (M
tx

ns
/s

ec
)

OSTO
TSTO
MSTO

(a) One warehouse (high contention).

0 10 20 30 40 50 60
threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(b) One warehouse per worker (low contention).

Figure 5.5: STOv2 baseline systems performance on TPC-C workloads.

Silo’s lack of contention regulation, inefficient aborts, and general lack of optimization, and

to DBx1000’s unnecessarily expensive deadlock avoidance and lack of contention-aware

indexing.

47

0 10 20 30 40 50 60
threads

0.0

0.2

0.4

0.6

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

OSTO
TSTO
MSTO

(a) YCSB-A (high contention: update-intensive, 50% updates, skew 0.99).

0 10 20 30 40 50 60
threads

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

) OSTO
TSTO
MSTO

(b) YCSB-B (lower contention: read-intensive, 5% updates, skew 0.8).

Figure 5.6: STOv2 baseline systems performance on YCSB workloads.

5.2.2 Benefits of reordering

Figure 5.5a (high-contention TPC-C) shows that TSTO, which implements TicToc con-

currency control, has an advantage even over MSTO (MVCC). TSTO’s dynamic transac-

tion reordering avoids some conflicts on this benchmark, helping it outperform OSTO by

up to 1.7×; since it keeps only one version per record, it avoids the version chain and

garbage collection overheads and outperforms MSTO by up to 1.3×. However, this effect

48

0 10 20 30 40 50 60
threads

0.0

0.1

0.2
Th

ro
ug

hp
ut

 (M
tx

ns
/s

ec
)

OSTO
TSTO
MSTO

(a) Wikipedia (high contention).

0 10 20 30 40 50 60
threads

0

1

2

3

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

OSTO
TSTO
MSTO

(b) RUBiS (high contention).

Figure 5.7: STOv2 performance on Wikipedia and RUBiS workloads.

is limited to TPC-C. We observed no significant benefit of TSTO over OSTO in any other

workload.

Careful manual inspection of the workload reveals that this effect centers on a conflict

between TPC-C’s new-order and payment transactions. These transactions conflict while

trying to access the same WAREHOUSE table row; new-order transactions read the tax rate

of the warehouse, while payment transactions increment the year-to-date payment amount

49

0 25 50
threads

0.0

0.2

0.4

0.6

0.8
Th

ro
ug

hp
ut

 (M
tx

ns
/s

ec
)

OSTO
MOCC

0 25 50
threads

TSTO

0 25 50
threads

MSTO
Cicada
ERMIA

(a) TPC-C, one warehouse (high contention).

0 25 50
threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

OSTO
MOCC

0 25 50
threads

TSTO

0 25 50
threads

MSTO
Cicada
ERMIA

(b) TPC-C, one warehouse per worker (low contention).

Figure 5.8: Cross-system comparisons: STOv2 baselines and other state-of-the-art sys-
tems, TPC-C full mix.

of the warehouse. Note that this particular conflict is a false conflict: the transactions actu-

ally access distinct columns in the warehouse table. Both TicToc and MVCC can reduce

aborts due to this conflict by rescheduling the new-order transaction to commit with an ear-

lier commit timestamp. This reduces aborts and improves performance, but it generalizes

poorly. Transactions that issue more reads than new-order are more difficult to reschedule,

since reads constrain ordering, and TicToc cannot reschedule write-write conflicts. Neither

TicToc nor MVCC addresses the true scalability issue, which is the false conflict. In § 6.5

50

we will show that eliminating this class of conflicts with timestamp splitting is a more

effective and generalizable approach that applies to all our benchmarks, not just TPC-C.

5.2.3 Cross-system comparisons

Figure 5.8 shows how STOv2 baseline systems compare with other state-of-the-art

main-memory transaction systems on TPC-C. We use reference distributions of Cicada,

ERMIA, and MOCC.

Figure 5.8a shows that both MOCC and ERMIA struggle at high contention (the reason

is locking overhead). Cicada outperforms both MSTO and OSTO, and matches TSTO’s

performance at high contention. Cicada implements more optimizations than MSTO. For

instance, where other MVCC systems, including MSTO, use a shared, and possibly con-

tended, global variable to assign execution timestamps, Cicada uses “loosely synchronized

software clocks”, a scalable distributed algorithm based on timestamp counters; and Ci-

cada’s “early version consistency check” and “write set sorting by contention” optimiza-

tions attempt to abort doomed transactions as soon as possible, thereby reducing wasted

work. Nevertheless, Cicada outperforms MSTO by at most 1.25× at all contention levels,

and MSTO slightly ouperforms Cicada at low contention (Figure 5.8b). This contrasts with

Cicada’s own evaluation, which compared systems with different basis factor choices, and

in which Cicada outperformed all other systems, even on low contention benchmarks, by

up to 3×. At low contention, however, Cicada’s performance collapses at high core counts

due to memory exhaustion (Figure 5.8b). This appears to be an issue with Cicada’s special-

purpose memory allocator, since there is no exhaustion when that allocator is replaced with

jemalloc, the default allocator in DBx1000.

51

Chapter 6

High Contention Optimizations

6.1 Overview

The baseline evaluation in the previous chapter shows that all three concurrency control

mechanisms perform badly under high contention. Although none of them collapse, they all

struggle to maintain performance as the concurrency level increases. This is unsurprising

as the high contention workloads, by definition, contain high degrees of conflicts. However,

our analyses show that many conflicts registered by concurrency control mechanisms are

not necessarily conflicts mandated by workload semantics. The true level of conflicts in the

workload can be greatly reduced, improving performance.

We show that by applying two optimization techniques, commit-time update (CU) and

timestamp splitting (TS), we can eliminate whole classes of conflicts. They improve per-

formance, sometimes significantly, for all of our workloads on OCC, TicToc, and MVCC.

They also exhibit synergy: on some workloads, TS makes CU far more effective, and to-

gether they can achieve greater benefit than the sum of their individual benefits. Our cur-

rent implementations of the these techniques require effort from transaction programmers,

as the instantiation of each technique depends on the workload. This differs from concur-

52

rency control changes such as TicToc and MVCC, which require no effort from transaction

programmers. However, the techniques are conceptually general, and applying them to a

given workload is not difficult, especially with the help of tools that automate some of the

more tedious tasks. CU and TS also eliminate classes of conflicts that concurrency con-

trol algorithms cannot, resulting in bigger improvements than those achieved by changing

concurrency control alone.

6.1.1 Commit-time updates (CU)

In many implementations, transactional read-modify-write operations are represented

as multiple entries in the tracking set. A read-modify-write is often broken into a read fol-

lowed by a write, leading to a read set entry and a write set entry in the tracking set. This

representation is general and intuitively correct, but it also means the read set entry associ-

ated with the read-modify-write operation now needs to be validated at commit time, as if

the read really observes transactional state. Many classes of read-modify-write operations,

however, do not actually observe, or more precisely externalize, transactional state.

Take the increment operation as an example. In many cases, an increment operation

used in a transaction does not export the value of the record being incremented. It only

cares about the increment actually takes place. This is common in transactions that maintain

various counters in the database. From the perspective of workload semantics, this type

of increment operations are blind writes. However, as mentioned earlier, these increment

operations are represented as pairs of read and write set entries in many systems. This adds

unnecessary read-write dependencies between increment operations, resulting in conflicts

that are not required by operation semantics.

Commit-time updates avoid these conflicts entirely by using a special write set entry

that indicates that a value should be incremented instead of overwritten, and stores only

53

the increment amount in the write set. The actual increment is then applied at commit time

during the install phase, when the appropriate locks are already held.

We implement commit-time updates for OCC, TicToc, and MVCC. The implementa-

tion centers on function objects called updaters that encode operations on a datatype. A

write set component can either be a full value used to overwrite the old value, as in con-

ventional transaction processing systems, or an updater indicating a read-modify-write that

does not externalize the concrete value of the record. The updater encodes the operation

to be performed on a record and any parameters to that operation. When invoked, it mod-

ifies the record according to its encoded parameters. Its execution is isolated to a single

record: it may access the record and its encoded parameters, but not any other state. A

single transaction may, however, invoke many updaters. Updaters currently do not support

read-modify-write operations that spread across multiple records.

An updater can be used if a read-modify-write operation within a transaction does not

externalize, by either data flow or control flow, the value of the underlying record. In ad-

dition to the increment operation mentioned before, many other operations also fall into

this category, such as maintaining a running maximum. Here, for example, T1 could use an

updater to modify x (the updater would perform the boxed operations), but T2 should not

(part of x is returned from the transaction so x must be observed):

T1:

tmp = y.col1;

x.col2 += 1;

x.col3 = max(tmp, x.col1);

return tmp;

T2:

tmp = y.col1;

x.col1 += tmp;

return x.col1;

We implement many classes of commit-time updates, such as 64-bit integer addition,

integer max, blind writes, and updates specialized for specific TPC-C transactions.

54

Commit-time updates relate to commutativity, which has long been used to reduce con-

flicts and increase concurrency in transactional systems [3, 10, 27, 61]. Though they can

represent both commutative and non-commutative read-modify-write operations, they do

not support some optimizations possible only for commutative operations [43].

6.1.2 Timestamp splitting (TS)

Many database records comprise multiple pieces of state subject to different access

patterns. For instance, records in a relational database may have many columns, some of

which are accessed more often or in different ways. Schema transformations such as row

splitting and vertical partitioning [44] use these patterns to reduce database I/O overhead by,

for example, only keeping frequently-accessed record fragments in a memory cache. The

timestamp splitting optimization uses these patterns to avoid classes of concurrent control

conflicts.

We observe that in the database table schema used by many workloads, columns that

are frequently updated and columns that are infrequently or even never updated are often

kept in the same row. In conventional database systems, all columns in the same row are

subject to concurrency control as a monolithic unit. This means that read accesses to the

infrequently updated part of the row will seemingly conflict with an update to the frequently

updated part of the row.

This occurs in a number of workloads, including the widely-used TPC-C benchmark.

For example, new-order transactions in the benchmark read the “tax rate” column from the

DISTRICT table, and payment transactions update the “year-to-date” amount in that table.

In most systems new-order and payment transactions will thus conflict on the DISTRICT ta-

ble row, although by workload semantics there isn’t any read-write dependencies between

the two transactions on this table row. We identified similar instances of false conflicts in

55

Lock Frequent
timestamp

Infrequent
timestamp

Key
Value

Col1 Col2 Col3 Col4

(a) Record structure in OSTO and TSTO with timestamp splitting.

Key
Chain A Chain B

Col1 Col2 Col3 Col4

version 1
Col1 Col2

version 2
Col3 Col4

version 1
Col3 Col4

(b) Record structure in MSTO with timestamp splitting.

Figure 6.1: Record structures with timestamp splitting. Assume the record has four
columns, where Col1 and Col2 are infrequently updated, and Col3 and Col4 are fre-
quently updated.

many other tables in TPC-C, as well as in all other benchmarks we measured. Timestamp

splitting divides a record’s columns into disjoint subsets, called column groups, and makes

concurrency control operate independently for each column group. Figure 6.1 shows exam-

ples of record structures with timestamp splitting in STOv2 concurrency control variants.

In OSTO and TSTO, we simply let each record contain one or more concurrency con-

trol timestamps, one for each column group. When modifying a record, the system updates

all timestamps that overlap the modified columns, but when observing a record, the sys-

tem observes only those timestamps sufficient to cover the observed columns. In a typical

example, shown in Figure 6.1a, one timestamp covers infrequently updated columns while

another timestamp covers the rest of the record. Simple two-part splitting like this is fre-

quently useful. In TPC-C’s CUSTOMER table, the columns with the customer’s name and

ID are often observed but never modified, whereas other columns, such as those contain-

56

ing the customer’s balance, change frequently; using a separate timestamp for name and

ID allows observations that access only name and ID to proceed without conflict even as

balance-related columns change.

MSTO implements timestamp splitting by including one or more version chains per-

record, one for each column group, as illustrated in Figure 6.1b. The version chains operate

independently as if they are different records, but they are stored under the same primary

key. At execution time, the transaction computes the desired chain(s) to perform MVCC

operations on based on the column access information supplied.

Although our system supports splitting records into an arbitrary number of column

groups, in our evaluation we only show results with two column groups. Additional column

groups come at higher costs – for instance, read and write sets as well as record layouts take

more memory – and on all of our benchmarks, splitting records into more than two column

groups negatively impacts performance.

Potential synergy with CU

Timestamp splitting can expose additional commit-time update opportunities. For ex-

ample, this transaction appears not to benefit from commit-time updates, since an observa-

tion of x is externalized (by returning x.col2).

tmp = y.col1;

x.col1 += tmp;

return x.col2;

However, if x.col1 and x.col2 are assigned to separate column groups by timestamp split-

ting and treated as independent units by concurrency control, the modification to x.col1

can be implemented via an updater – the observation of x.col1 is not externalized.

57

6.2 Implementation of CU

In concurrency control mechanisms where only the latest version of each record is

kept, like OCC and TicToc, updaters are invoked during the install phase (§ 3.2.2, Phase

3) of the commit protocol. They apply modifications in-place on the records directly while

the corresponding transaction locks are held. This approach no longer works for MVCC

because records are never updated in-place – old versions of a record are immutable, and a

new version has to be created and inserted into the version chain for every update.

6.2.1 CU implementation in MSTO

We implement commit-time updates in MSTO using special version chain elements

called delta versions. Delta versions simply contain updaters and do not represent the full

value of the version, as illustrated in Figure 6.2. Delta versions are inserted into the version

chain as blind writes.

Since delta versions do not contain full values, reading a delta version requires a flat-

tening procedure. This procedure computes the full, materialized value of the record at the

read timestamp of the transaction. It starts from the most recent full version of the record

and applies all updater operations in delta versions in write timestamp order. The resulting

full value of the version is then copied into delta version, turning the delta version into a

full version ready for normal MVCC reads.

6.2.2 Concurrent flattening in MSTO CU

The flattening procedure is thread-safe. Each thread that flattens 1) creates a private

copy of the full version used as the “basis” of the flattening procedure, 2) applies updater

operations in delta versions to the private copy to build the materialized value, and 3) copies

the final materialized value to the target delta version while holding a lock. If a thread

58

Record Key Head version Inlined version
COMMITTED

Version
chain

Version
PENDING∆

Version
COMMITTED∆

Version
ABORTED

Figure 6.2: Record structure in MSTO with commit-time updates. The COMMITTED∆ ver-
sion encodes an updater. Concurrent transactions can insert more delta versions either
before or after the COMMITTED∆.

detects that the delta version is locked by another thread’s flattening process at any time, it

can simply abandon its own flattening process and wait for the lock to become free.

This, however, works only if concurrent flattening procedures initiated at the same delta

version are guaranteed to produce the same materialized value of the record. It means trans-

actions must prevent new versions, delta or full, from being inserted to the segment of the

version chain that is being flattened.

Currently we use a flatten-freeze technique to ensure correct concurrent flattening. The

flattening procedure works in two phases, because MSTO version chains are singly-linked

lists. The first phase walks down the version chain from the delta version being “read”,

pushing delta versions into a stack until it reaches a full version that can be used as a basis

for flattening. The second phase then pops delta versions from the stack and apply updaters

in them to the full version in the correct order. During the first phase that walks down the

chain, the version chain is frozen to prevent new version insertions by extending the read

timestamps of every version visited to the write timestamp of the delta version where the

flattening started. This guarantees that any new versions older than the delta version (which

are the only versions that could have interfered with the flattening process) cannot be in-

serted and committed in the version chain segment where flattening occurs. (Due to the

read timestamp consistency check mandated by the MVCC commit protocol: the inserted

version’s write timestamp must be greater than the read timestamp of the version it over-

59

writes.) The first flattening procedure that finishes the first-phase version chain walk freezes

the chain segment, and all subsequent flattening procedures on the same delta version are

guaranteed to reach the same result.

6.2.3 Impact on MSTO garbage collection

Delta versions impact MSTO’s garbage collection, since a version may be marked for

deletion only if a newer full version exists (a newer delta version does not suffice). MSTO

ensures that whenever a full version is created – either directly, through a conventional

write, or indirectly, when a read flattens a delta version – all older versions are marked for

garbage collection. To prevent an old version from being enqueued for deletion by multiple

threads, each old version also contains an atomic flag indicating whether it has already been

put on the garbage collection queue of some thread. The maintenance function responsible

for garbage collection also periodically performs flattening on infrequently-read records so

that version chains do not grow indefinitely.

6.3 Implementation of TS

We implement timestamp splitting in STOv2 using both compile-time and runtime com-

ponents.

Static workload properties are analyzed to create a plan for splitting records into column

groups, expressed as a series of C++ template specializations. The template specializations

map columns to the timestamp or version chain of the column group it belongs to, as well as

implementing specialized copy functions that write only to affected column groups while

installing new versions of column groups.

In single-version concurrency control variants (OSTO and TSTO), we do not need to

alter the underlying storage of the row, but need only to re-associate timestamps to column

60

<?xml version="1.0"?>

<ts-split-definition>

<record name="district_value">

<split name="district_value_infreq">

<field type="vchar" width="10" name="d_name"/>

<field type="vchar" width="20" name="d_street_1"/>

<field type="vchar" width="20" name="d_street_2"/>

<field type="vchar" width="20" name="d_city"/>

<field type="fchar" width="2" name="d_state"/>

<field type="fchar" width="9" name="d_zip"/>

<field type="int" width="64" name="d_tax"/>

</split>

<split name="district_value_freq">

<field type="int" width="64" name="d_ytd"/>

</split>

</record>

<record name=...

...

</record>

...

</ts-split-definition>

Figure 6.3: An example of the human-readable XML expression of TS policy, showing
column groups for TPC-C DISTRICT table records.

groups. In MSTO, however, different column groups have to be stored in separate objects

for the version chains to operate independently from one another. This complicates the TS

implementation in MSTO a little, as now a transaction that reads from multiple column

groups will need to access multiple MVCC old versions. To unify the interface presented

to the application, STOv2 adds an indirection called record accessors that internally han-

dle this translation from a named column to the actual memory address of the column

value. Record accessors are also statically expressed as C++ template specializations. Due

to the large amount of C++ boilerplate code involved, we developed an automated tool that

61

generates all C++ template specialization code required to implement TS for all three con-

currency control variants. The tool generates code from an XML document that expresses

column group assignment for each record in a more human-readable format demonstrated

in Figure 6.3. The analysis of workload properties currently still has to be done manually.

At runtime, each transaction now needs to supply column access information when ac-

cessing a record, specifying the columns and the type of operation (read, write, or update)

it wishes to perform on each column. STOv2 then computes from the column access infor-

mation the column groups being accessed, and automatically performs the appropriate op-

erations with the corresponding concurrency control timestamps or MVCC version chains.

This computation is performed dynamically at runtime to allow maximum flexibility.

6.4 Workload integration

We currently manually inspect and analyze our workloads to identify opportunities for

CU and TS. Based on analysis results, we implement optimization policies in the form of

C++ updater template specializations (for CU) and XML column group definitions (for TS).

These definitions are then fed through the appropriate code generation tools to become part

of the source code for STOv2 and applied at compile time.

We now provide some additional examples of how we exploit CU and TS opportunities

in the workloads we measure. We use TS to divide records into frequently and infrequently

updated column groups. For records where such access pattern is unclear, like in YCSB

where column selection is random, we partition each record into two evenly divided parts:

one for odd-numbered columns and the other for even-numbered ones. Update operations in

YCSB are blind writes making them ideal candidates for commit-time updates. In RUBiS,

an updater is used to modify an item’s max-bid and quantity columns. In TPC-C, an

updater on warehouse increments its ytd (year-to-date order amount) field, and one on

62

class NewOrderStockUpdater {

public:

NewOrderStockUpdater(int32_t qty, bool remote)

: update_qty(qty), is_remote(remote) {}

void operate(stock_value& sv) const {

if ((sv.s_quantity - 10) >= update_qty)

sv.s_quantity -= update_qty;

else

sv.s_quantity += (91 - update_qty);

sv.s_ytd += update_qty;

sv.s_order_cnt += 1;

if (is_remote)

sv.s_remote_cnt += 1;

}

private:

int32_t update_qty;

bool is_remote;

};

Figure 6.4: Updater for STOCK table records, used by TPC-C’s new-order transactions.
The operate() method encodes the commit-time operation.

customer updates several of its fields for orders and payments. Currently we create updaters

that are datatype-specific, meaning that only one updater can be allowed per record. An

updater can still be parameterized to support different operations on a given record type.

Currently, updater code is not auto-generated, but is typically short enough to imple-

ment by hand. Auto-generation of updater code is left for future work. The shortest updater

takes about 10 lines of code, including boilerplate; the longest, on TPC-C’s CUSTOMER ta-

ble, takes about 30 lines. Figure 6.4 shows a C++ definition of an updater for TPC-C STOCK

table records that handles stock deduction and replenishment in new-order transactions.

Commit-time updates reduce transaction read set sizes significantly. For example, in

TPC-C, all operations on the STOCK table can be implemented via commit-time updates.

This reduces the read set size of each new-order transaction from 33 to 23 (30% reduction)

63

on average. In a TPC-C payment transaction, all warehouse and district YTD updates are

commutative, so are customer YTD payment and payment count updates. Commutative

updates reduce the read set size by by half, from 6 to 3, in this transaction, even without

discounting the reading of constant data such as warehouse tax rate, customer name, credit,

etc. Smaller read sets mean fewer read-write dependency edges between transactions and

fewer conflicts.

6.5 Evaluation

We now evaluate the commit-time update and timestamp splitting optimizations to bet-

ter understand their benefits at high contention, their overheads at low contention, and their

applicability to different workloads and CC techniques. We conduct a series of experi-

ments on STOv2 with these optimizations, using all three CC mechanisms, and measure

them against TPC-C, YCSB, Wikipedia, and RUBiS workloads.

6.5.1 Combined effects

Figures 6.5–6.7 shows the effects of applying commit-time updates (CU) and timestamp

splitting (TS) together under our suite of workloads.

In high-contention TPC-C (Figure 6.5a), CU+TS greatly improves throughput for all

three concurrency control variants, with gains ranging from 2× (TSTO) to 4.8× (OSTO). In

comparison, the best-performing concurrency control variant measured for this workload,

TSTO, outperforms the lowest-performing concurrency control variant OSTO by just 1.8×

(Figure 5.5a). This shows that CU and TS optimizations achieve much higher gains than

concurrency control algorithm changes.

High-contention TPC-C and YCSB-A did not scale to 64 threads under any of our

three concurrency control variants. However, with combined CU and TS optimizations

64

0 25 50
threads

0.0

0.5

1.0

1.5

2.0
Th

ro
ug

hp
ut

 (M
tx

ns
/s

ec
) OSTO+CU+TS

OSTO

0 25 50
threads

TSTO+CU+TS
TSTO

0 25 50
threads

MSTO+CU+TS
MSTO

(a) TPC-C, one warehouse (high contention).

0 25 50
threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

OSTO+CU+TS
OSTO

0 25 50
threads

TSTO+CU+TS
TSTO

0 25 50
threads

MSTO+CU+TS
MSTO

(b) TPC-C, one warehouse per worker (low contention).

Figure 6.5: TPC-C results with high contention optimizations.

(+CU+TS), MSTO becomes the only scalable variant. This is thanks to MSTO’s lock-free

pending version insertion technique, which makes the lock phase of the commit protocol

deadlock-free even without deadlock detection. OSTO and TSTO cannot sustain through-

put at high core counts due to the inherent limitations of single-version concurrency con-

trols when handling read-only transactions. However, the absolute throughput of optimized

MSTO does not outpace its OSTO or TSTO counterparts until extremely high contention

(1-warehouse TPC-C at more than 20 cores), and optimized OSTO and TSTO always out-

65

0 25 50
threads

0

1

2

3
Th

ro
ug

hp
ut

 (M
tx

ns
/s

ec
) OSTO+CU+TS

OSTO

0 25 50
threads

TSTO+CU+TS
TSTO

0 25 50
threads

MSTO+CU+TS
MSTO

(a) YCSB-A (high contention: update-intensive, 50% updates, skew 0.99).

0 25 50
threads

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

OSTO+CU+TS
OSTO

0 25 50
threads

TSTO+CU+TS
TSTO

0 25 50
threads

MSTO+CU+TS
MSTO

(b) YCSB-B (lower contention: read-intensive, 5% updates, skew 0.8).

Figure 6.6: YCSB results with high contention optimizations.

perform baseline MSTO.

Similar trends are observed in the high-contention, update intensive YCSB-A workload

(Figure 6.6a). MSTO with CU+TS is again the only scalable variant we measured. It also

manages to achieve much higher gains (as high as 9.5×) in this workload, because the

workload becomes essentially conflict-free with commit-time updates turning updates to

blind writes.

For low-contention TPC-C (Figure 6.5b), where high contention optimizations do not

66

0 25 50
threads

0.0

0.2

0.4

0.6
Th

ro
ug

hp
ut

 (M
tx

ns
/s

ec
)

OSTO+CU+TS
OSTO

0 25 50
threads

TSTO+CU+TS
TSTO

0 25 50
threads

MSTO+CU+TS
MSTO

(a) Wikipedia (high contention).

0 25 50
threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

OSTO+CU+TS
OSTO

0 25 50
threads

TSTO+CU+TS
TSTO

0 25 50
threads

MSTO+CU+TS
MSTO

(b) RUBiS (high contention).

Figure 6.7: Wikipedia and RUBiS results with high contention optimizations.

help reduce conflicts, CU+TS adds performance overhead ranging from 6% (in OSTO)

to 18% (in MSTO). This is roughly comparable to the difference between baseline TSTO

and OSTO at low contention, while significantly less than the difference between baseline

MSTO and OSTO. Low-contention TPC-C results in Figure 5.5b show that OSTO is faster

than than TSTO by roughly 10%, and OSTO is 1.93× faster than MSTO.

CU+TS adds slightly more overhead at low-contention TPC-C in MSTO due to its ver-

sion chain complexity and its garbage collection overhead. The high absolute throughput

67

in low contention workloads can lead to long version chains containing delta versions. As

a specific example, updates to warehouse ytd values, which are only written to and never

read from, can lead to long version chains that needs to be cleaned up by periodic flatten-

ing at garbage collection time. Garbage collection improvements can potentially reduce this

overhead and may be an interesting direction for future work. In all cases, the added over-

head of CU+TS does not affect scalability. We will discuss in Chapter 7 that alternative CU

and TS implementations in MSTO can lead to surprisingly worse performance overhead at

low-contention.

We find that CU+TS also improves OSTO and TSTO performance in YCSB-B, de-

spite it being a low-contention benchmark. Upon investigation, we discovered that CU+TS

reduces the amount of data retrieved from and written to the database because CU up-

daters move data within only the columns specified. CU+TS incurs a negligible overhead

for MSTO in this benchmark, showing that the multiple version chain organization and the

additional garbage collection and flattening mechanisms do not add overhead for a read-

mostly workload.

CU+TS also benefits all three concurrency control variants under the high-contention

Wikipedia and RUBiS workloads, as shown in Figure 6.7. In Wikipedia, CU+TS improves

performance by 2.8–3.8× at high core counts, while in RUBiS the gains vary from 1.4–

1.7×, depending on the underlying concurrency control used.

In summary, CU+TS benefits all three concurrency control algorithms we studied, and

can be applied to benefit many different workloads.

6.5.2 Separate effects

Table 6.1 shows a breakdown of the effects of CU and TS, when applied individually, on

our high-contention benchmarks for OCC and MVCC. In some workloads, such as TPC-C,

68

Benchmark OSTO OSTO+CU OSTO+TS OSTO+CU+TS
TPC-C 292 307 (1.05×) 577 (1.98×) 1393 (4.78×)
YCSB 473 855 (1.81×) 466 (0.99×) 844 (1.78×)
Wikipedia 171 498 (2.91×) 178 (1.04×) 489 (2.86×)
RUBiS 2836 4148 (1.46×) 2829 (1.00×) 4150 (1.46×)

Benchmark MSTO MSTO+CU MSTO+TS MSTO+CU+TS
TPC-C 526 474 (0.90×) 442 (0.84×) 2002 (3.81×)
YCSB 219 1324 (6.04×) 591 (2.70×) 2075 (9.46×)
Wikipedia 120 458 (3.81×) 121 (1.00×) 457 (3.80×)
RUBiS 2287 3732 (1.63×) 2488 (1.09×) 3838 (1.68×)

Table 6.1: Throughput in Ktxns/sec at 64 threads in high-contention benchmarks, with
improvements over respective baselines in parentheses.

CU and TS produce greater benefits together than would be expected from their individual

performance. This is especially clear for MSTO: CU and TS reduce performance when

applied individually, but improve performance by 3.81× at 64 threads when applied in

combination. This is because although many frequently-updated columns can be updated

using CU, it is only effective if the infrequently-updated columns are assigned to a separate

column group that is independently concurrency-controlled (as explained in § 6.1.2).

Of the two optimizations, CU is more frequently useful on its own. For instance, the

highest overall performance in the Wikipedia benchmark is obtained by applying CU only

to OSTO. In the RUBiS benchmark, CU alone is responsible for most of the gains in

CU+TS for both OSTO and MSTO. This is an indication that write-write conflicts are

predominant in these workloads. CU reduces the impact of write-write conflicts while TS

reduces the impact of read-write false sharing.

69

Chapter 7

Discussion

As in all complex systems, the devil is in the details. Different design choices of the

same mechanisms we describe in this work can have significant correctness and perfor-

mance impact. We discuss some of the instances here.

7.1 Phantom Protection in TSTO

STOv2 uses the phantom protection strategy described in § 3.2.1 to ensure transac-

tional consistency of key gaps. Masstree maintains OCC-style timestamps in leaf nodes

already for its concurrent operations. For OSTO and MSTO, since the commit timestamps

of all transactions monotonically increase1, a simple OCC-style validation of Masstree’s

leaf node timestamps at commit time is enough to guarantee serializability.

TSTO is different in that it allows more flexible commit schedules than does OCC. One

may mistake this flexibility for some kind of “backwards compatibility” with OCC and

conclude that the OCC-style Masstree node timestamp validation still works for phantom

1Technically, read-only transactions in MSTO commit at timestamps in the recent past. But since they
read from immutable snapshots, phantom protection is irrelevant for this class of transactions.

70

protection purposes, but we demonstrate that this is not true.

Consider two transactions T1 and T2 that execute concurrently and interleave as shown

below. Suppose Record A has wts=100 and rts=100 initially. K is a key in an index ac-

cessed by both T1 and T2.

T1:

read Record A

insert K

(increment node timestamp)

commit protocol:

commit timestamp <- 100

validate Record A - OK

T2:

(read node timestamp)

observe key gap containing K

write Record A

commit protocol:

commit timestamp <- 101

validate node timestamp - OK

According to the TicToc commit protocol, both T1 and T2 will be able to commit, and

T1 commits before T2 in serialization order. However, if we execute the two transaction

sequentially, it’s clear that T2 should observe that key K exists, instead of seeing a key gap.

The problem is that the node timestamps in Masstree, which are used for phantom

protection, by default are not compatible with TicToc. These timestamps by default operate

in an OCC manner–a changed timestamp indicates that the content of the node has been

modified, prompting concurrent readers to retry. All of this occurs within Masstree routines

but not during the transaction commit protocol, so the node timestamps do not participate

in TicToc’s commit timestamp computation, leading to incorrect transaction schedules. We

thus add TicToc timestamps to Masstree leaf nodes and observe these timestamps instead

71

for phantom protection. The original OCC-like timestamps are preserved in Masstree nodes

for Masstree’s internal synchronization.

Using TicToc timestamps for phantom protection comes with certain overhead. These

timestamps are in addition to Masstree’s native node timestamps, affecting the carefully

engineered cache line alignment of Masstree’s leaf nodes. The timestamps now also partic-

ipate in the commit protocol, leading to more atomic operations in shared memory.

The original TicToc algorithm and its implementation in DBx1000 [63, 64] do not ad-

dress the issue of phantom protection. Prior work, including Cicada [37], opted to used the

incorrect phantom protection implementation, which simply uses Masstree’s native node

timestamps, as an “upper bound” of TicToc’s performance. We evaluate both the correct

(full) and incorrect TicToc phantom protection implementations using the TPC-C bench-

mark to quantify how much this upper bound overestimates TicToc’s performance.

Figure 7.1 shows the results. We find that full phantom protection implementation adds

about 7-10% overhead in both high and low contention TPC-C. The overhead is consistent

across core counts and does not appear to impact performance dynamics. Since the incor-

rect TicToc phantom protection implementation appears to perform reasonably close to the

full implementation, we consider it suitable for estimation or comparison purposes, though

more studies on more workloads are needed.

7.2 Conflicts due to Sequential Insertion

A common pattern in database workloads is inserting rows into tables without explicitly

specifying the primary key. This almost always occurs when creating new database records.

In many databases, primary keys are generated via auto-increment. This leads to sequential

insertions into the database table when creating records.

Silo first discovered that the strict order ID generation policy in TPC-C induces unnec-

72

0 20 40 60
threads

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

) TSTO
TSTO (incorrect)

0 20 40 60
threads

TSTO+CU+TS
TSTO+CU+TS (incorrect)

(a) One warehouse (high contention).

0 20 40 60
threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

) TSTO
TSTO (incorrect)

0 20 40 60
threads

TSTO+CU+TS
TSTO+CU+TS (incorrect)

(b) One warehouse per worker (low contention).

Figure 7.1: TSTO full vs. incorrect phantom protection comparison using TPC-C.

essary conflicts between new-order transactions [56]. The TPC-C spec requires that all new

orders within the same district have consecutive, monotonically increasing order IDs. This

makes insertions to new-order tables non-blind writes, as it must validate at commit time

the generated order ID hasn’t been taken by another committed transaction. Silo notices

that this aspect of the TPC-C spec makes the workload inherently non-scalable. It thus pro-

poses fast order ID generation, which allows gaps in order IDs within the same district,

drastically improving performance and scalability.

73

We further observe that even by making table row insertions blind writes from a con-

currency control perspective, the relative closeness and/or strict monotonicity of generated

primary keys in the key space still negatively impact performance, and in certain cases can

even lead to situations that resemble a contention collapse. For example, if a newly gener-

ated primary key must be larger than all existing keys in the key space, then all insertions

to an ordered table will contend on the right-most leaf node of the B-tree. Although this

need not be a concurrency control conflict, it still leads to cache line bouncing and causes

sharp drops in performance.

We demonstrate this effect using the key-generation policy for TPC-C’s HISTORY table.

The TPC-C specification [55, §1.3.1, page 15] says that this table does not require a pri-

mary key, as “within the context of the benchmark, there is no need to uniquely identify

a row within this table”. The HISTORY table is a table that is only inserted to and never

queried from, likely serving only record-keeping purposes. Our TPC-C implementation

uses Masstree to implement this table. We compare two implementations, one with a sim-

ple per-table atomic counter to generate the Masstree keys used to insert new records into

the table, and the other using a multi-part key that includes an atomic counter component

for uniqueness, but also includes the customer and district IDs to spread out the key dis-

tribution and to the avoid concurrency hot spot in the right-most leaf node. Note that both

implementations conform to the TPC-C specification.

Figure 7.2 shows the results comparing the two HISTORY table implementations under

a high-contention TPC-C workload with OSTO and TSTO, we find that the difference in

HISTORY table key choices, which is something the TPC-C specification doesn’t even care

about, can have significant performance implications. Although Figure 7.2a suggests that

baseline performance is not affected much, Figure 7.2b shows that once we eliminate some

conflicts at the concurrency control level using high contention optimizations, insertion

to the HISTORY table becomes a contention hot spot. With sequential insertion, both op-

74

0 20 40 60
threads

0.0

0.2

0.4

0.6

0.8

1.0
Th

ro
ug

hp
ut

 (M
tx

ns
/s

ec
) OSTO

OSTO (SeqKey)

0 20 40 60
threads

TSTO
TSTO (SeqKey)

(a) Impact on OSTO and TSTO baselines.

0 20 40 60
threads

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

) OSTO
OSTO+CU+TS
OSTO+CU+TS (SeqKey)

0 20 40 60
threads

TSTO
TSTO+CU+TS
TSTO+CU+TS (SeqKey)

(b) Impact on optimized OSTO and TSTO.

Figure 7.2: Performance impact of sequential HISTORY table insertions (SeqKey) in high
contention TPC-C.

timized OSTO and optimized TSTO see a sharp performance drop from 12 threads to 24

threads, similar to the contention collapse we observed due to lack of contention regulation

in § 5.1.1, The drop is even more significant in TSTO due to the additional contention on

the node TicToc timestamp used for phantom protection. The contention collapse is so bad

that it almost renders the high contention optimizations ineffective at high core counts.

In certain high-contention scenarios, this additional conflict can have extra devastating

performance effects. When the sequential insertion conflict in TPC-C, for example, oc-

75

0 10 20 30 40 50 60
threads

0.0

0.1

0.2

0.3

0.4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

OSTO Baseline
No contention
regulation
Slow allocator

(a) Without sequential HISTORY table insertions.

0 10 20 30 40 50 60
threads

0.0

0.1

0.2

0.3

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

Inefficient aborts
No hash indexes

(b) With sequential HISTORY table insertions.

Figure 7.3: Impact of sequential HISTORY table insertion on TPC-C basis factor experi-
ments.

curs without contention regulation, the performance completely collapses to close to zero.

This is demonstrated in Figure 7.3, using the same factor analysis experiment in § 5.1.

Figure 7.3a shows the results of the experiment without sequential insertion, and hence

conflict on the right-most leaf node of the tree, in the HISTORY table. Figure 7.3b shows the

76

results with sequential insertion. The red “No contention regulation” lines in the two graphs

shows stark differences. Without contention regulation and without the sequential key in-

sertion conflict, although performance does drop sharply from 12 to 24 threads, it never

experiences a full collapse that sees performance crashing to near zero. When the lack of

contention regulation is compounded with the additional right-most leaf node conflict due

to sequential key insertions, the performance collapsed to near zero. This is evidence that

sometimes an additional, single point of contention can have unexpected and dispropor-

tional performance consequences.

7.3 MSTO Timestamp Splitting Implementation Choices

Timestamp splitting (TS) in MSTO is implemented as multiple version chains per

record. We choose this implementation over another popular approach, vertical partition-

ing, because it does not increase the total number of tables in the database. It also requires

no additional table lookups when multiple column groups within the same record are ac-

cessed. Vertical partitioning, however, is much easier to implement in an existing system,

often requiring mere configuration changes. We measure both vertical partitioning and our

multi-chain TS implementations in MSTO and compare their performance.

Experimental results in Figure 7.4 show that vertical partitioning incurs an∼ 13% over-

head in most cases. The exception is in high contention and without CU (TS-only, the left

graph in Figure 7.4a), which shows vertical partitioning has a slight advantage (1.16×)

over multi-chain TS. We believe this is due to 1) the overhead in computing column-to-

column-group mappings during transaction execution, a step our vertical partitioning im-

plementation currently skips, and 2) TS alone does not significantly reduce conflicts in this

workload for MSTO. The column-to-column-group mapping computation overhead, how-

ever, is mainly an artifact of us implementing transactions directly as C++ programs. In a

77

0 20 40 60
threads

0.0

0.5

1.0

1.5

2.0
Th

ro
ug

hp
ut

 (M
tx

ns
/s

ec
) MSTO+TS

MSTO+TS (VertPart)

0 20 40 60
threads

MSTO+CU+TS
MSTO+CU+TS (VertPart)

(a) One warehouse (high contention).

0 20 40 60
threads

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

MSTO+TS
MSTO+TS (VertPart)

0 20 40 60
threads

MSTO+CU+TS
MSTO+CU+TS (VertPart)

(b) One warehouse per worker (low contention).

Figure 7.4: Performance comparison of different MSTO TS implementations: multi-chain
(default) and vertical partitioning (VertPart).

real system, this mapping would still have to computed even with vertical partitioning.

Another TS implementation we considered for MSTO was to only use a single chain

per record, but in each old version, instead of storing a full value, we store only the updated

portion of the value, and some encoded information about which columns are updated.

This becomes similar to the delta version structure in commit-time updates. We ended up

not pursuing this approach because accessing an infrequently updated column in this design

requires searching deep into the version chain, skipping through many new versions created

78

by updates to (other) column groups that are frequently updated.

7.4 MSTO Commit-time Update Implementation Choices

Much of the complexity of commit-time updates (CU) in MSTO stems from their inter-

action with reads. The flattening of delta versions requires that no new versions are inserted

down the version chain, beginning from the version where the flattening process first ini-

tiates. Our flatten-freeze CU implementation extends the read timestamp of each version

visited during flattening, “freezing” them in place and to prevent new version insertions.

An alternative approach, which does not involve extending the read timestamps of mul-

tiple versions at execution time, is to make all transactions observe from the recent snapshot

used by read-only transactions at execution time, when CU is enabled. This simplifies flat-

tening, which can simply traverse down the version chain without worrying about new

version insertions. The potential cost of this approach may be two-fold: 1) transactions

reading from a snapshot in the past will still need to commit at present (if it’s a read/write

transaction), making it more likely for the execution-time observations to fail commit-time

validations; 2) a version in the past is relatively deep down in the version chain, reading

from which could incur additional pointer chases and cache misses.

To evaluate which approach works better, we compare these two implementations again

using high and low contention TPC-C benchmarks. Figure 7.5 shows the results. The de-

fault flatten-freeze implementation performs better than the alternative reading-in-the-past

implementation across the board. The overhead of reading-in-the-past is exacerbated when

only CU is enabled (left-hand-side graphs), where the default flatten-freeze implementa-

tion outperforms it by up to 2×. Without TS, the version chain gets longer, and reading

from the snapshot means having to search deeper down the version chain. With both CU

and TS enabled, reading-from-the-past does not actually incur significant overhead com-

79

0 20 40 60
threads

0.0

0.5

1.0

1.5

2.0
Th

ro
ug

hp
ut

 (M
tx

ns
/s

ec
) MSTO+CU

MSTO+CU (ReadPast)

0 20 40 60
threads

MSTO+CU+TS
MSTO+CU+TS (ReadPast)

(a) One warehouse (high contention).

0 20 40 60
threads

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

MSTO+CU
MSTO+CU (ReadPast)

0 20 40 60
threads

MSTO+CU+TS
MSTO+CU+TS (ReadPast)

(b) One warehouse per worker (low contention).

Figure 7.5: Performance comparison of different MSTO CU implementations: flatten-
freeze (default) and reading in the past (ReadPast).

pared to the flatten-freeze approach. This is an indication that CU and TS applied together

very effectively separate column groups into read-frequent and update-frequent ones. We

find that commit-time read validation failures is the dominant factor explaining the per-

formance difference. Using the read-in-the-past CU implementation, payment transactions

sees a concentrated abort rate of 72%, while in flatten-freeze the aborts are more evenly

distributed between payment and new-order transactions at about 40% (1 warehouse and

24 threads).

80

7.5 Future work

This work investigated and answered many important questions related to transaction

processing performance in main-memory database systems, but still there are many unan-

swered questions that could be interesting directions for future studies.

7.5.1 Better locks

STOv2 does not rely on state-of-the-art locking mechanisms to achieve its high per-

formance. Locks in STOv2 are just basic compare-and-swap (CAS) spin locks. Threads

attempt to acquire a lock by performing a CAS on the lock word, and then pause the pro-

cessor if the CAS fails before retrying. Currently threads do not backoff between lock

attempts – we find that inserting randomized backoffs between CAS retries adds too much

overhead (due to the randomness computation) and lead to idleness.

The timestamp splitting optimization reduces read-write dependencies between transac-

tions and also reduces cache line bouncing of the lock word. This reduces STOv2’s reliance

on high-performance locking mechanisms that perform well under high lock contention.

Commit-time updates, however, can still greatly benefit from better locking mecha-

nisms. Although commit-time updates reduce write-write conflicts at the concurrency con-

trol level, lock contention is still high when many threads tries to update the same record.

STOv2 currently avoids excessive cache line bouncing by aborting transactions that fail to

acquire locks within a certain time limit (see bounded spinning in § 5.1.6), but finding the

optimal bound can be difficult – a longer spin bound may lead to more cache line bounc-

ing, while a shorter spin bound causes more transaction aborts and wasted work. It would

be interesting to investigate alternative lock implementations that more efficiently regulate

lock contention.

81

7.5.2 Multi-version indexes

In MSTO, the index mapping structure is simply a concurrent B-tree and is not multi-

versioned. Instead, the index keeps all keys that could still be accessed (including deleted

ones) and lazily cleans up deleted rows via garbage collection. This is in contrast to the

approach used in Cicada [37], where each node of the B-tree forming the index structure

is multi-versioned. Multi-version indexes are more complicated and use more memory,

because every update to the index also requires copy-on-write updates of index nodes. It

also requires reference counting to garbage-collect unreachable index nodes. It also comes

with the drawback that concurrent insertions to the index with different keys but within the

same node would appear to conflict at the concurrency control level.

However, as Cicada results show, multi-version indexes appear to be another solution

to the secondary index contention problem discussed in § 5.1.5. Multi-version indexes also

have the advantage that read-only transactions now truly never abort (in MSTO read-only

transactions can still abort for phantom protection reasons, although we observe this very

rarely), and the commit protocol can be skipped completely for these transactions. Multi-

version indexes also simplify the interaction between deletes and scans in that scans no

longer need to skip through deleted keys. Although our results suggest that single-version

concurrent indexes can perform just as well as multi-version indexes in the benchmarks we

measure, it would be interesting to more thoroughly evaluate the costs and benefits of using

multi-version indexes in these workloads.

7.5.3 Better contention-aware indexes

Contention-aware indexes (§ 5.1.5) are critical in avoiding a surprising class of false

conflicts. The current design, which relies on the trie-like properties of Masstree and re-

quires larger key sizes, is very specific to Masstree and requires some manual effort to

82

Head version

Version 4 Version 3 Version 2 Version 1

Read txn

Figure 7.6: Versions must be kept alive due to an active transaction under the current
epoch-based garbage collection mechanism.

specify component boundaries in a multi-part key.

There are ways to implement contention-aware indexes more generally. One observa-

tion is that whenever it crosses a component boundary, the change in the raw value of the

key tends to spike. For example, when representing the NEW-ORDER table multi-part key

using 32 bits for the combined warehouse/district IDs, and another 32 bits for the order ID,

keys 〈wid = 1,did = 1,oid = 999〉 and 〈wid = 1,did = 2,oid = 1〉 are separated by more

than four billion in raw key values. Consecutive keys with the same 〈wid,did〉 prefix are

much closer, often separated only by one in raw value. It is possible to detect spikes like

this during B-tree node splits to make sure that keys on different sides of a spike do not end

up in the same leaf node. Such contention-aware indexes could be more general and do not

rely on Masstree’s trie layers.

7.5.4 Garbage collection improvements

Garbage collection in MSTO currently requires atomic operations. Every version con-

tains an atomic flag indicating whether the version has already been put onto the garbage

collection queue of a different thread, and every thread marks old versions for garbage col-

lection by atomically test-and-seting this flag. The cost of requiring one CAS operation per

version marked for garbage collection might become a bottleneck in large-scale systems.

This is needed for correct concurrent operation under the current design, but alternative

designs that do not require such atomic operations might be possible.

83

The epoch-based garbage collection mechanism also doesn’t free memory at the opti-

mal rate. Long-running transactions can hold up the global GC epoch and prevent garbage

collection from making progress. This can lead to unnecessary old versions accumulating in

the middle of the version chain for records that are frequently updated while also accessed

by a long-running transaction. As illustrated in Figure 7.6, an active transaction, poten-

tially long-running, with a relatively old read timestamp can hold up garbage collection of

the entire version chain up to the version being read. In Figure 7.6, Versions 1 through 4

all have to be kept alive under the current garbage collection mechanism. However, if the

read transaction (potentially accessing Version 1, shown by the dotted arrow in the figure)

is the only active transaction in the system that can access versions older than Version 4,

there is no need to preserve Versions 2 and 3. The current epoch-based garbage collection

mechanism is not optimal when it comes to identifying unneeded old versions to garbage

collect.

Solutions exist to more eagerly garbage-collect such old versions. They require poten-

tially more sophisticated garbage collection mechanisms, with the benefit of less memory

consumption. Systems like this have already been proposed [8]. More studies on mecha-

nisms like this and more detailed evaluation of their performance impact would be a promis-

ing direction of future research.

7.5.5 Automated analysis of workload properties

High contention optimizations presented in this work currently still require manual ef-

fort to inspect and analyze static workload properties. These optimizations would be more

useful if such analysis can be automated.

Timestamp splitting opportunities may be discovered by analyzing column access pat-

terns in transactions using algorithmic techniques like frequent item set mining [7]. It might

84

be more difficult to identify commit-time updates opportunities, but common operations

such as increments and blind writes should be relatively easy to identify. Developing tools

that can process a workload, preferably in the form of an industry standard query language

such as SQL, and automatically extract TS and CU policies for the workload is an exciting

opportunity for future work, as we have already demonstrated the effectiveness of these

optimizations in a number of widely-used benchmarks.

7.5.6 More workloads

Our suite of benchmarks represent a broader range of OLTP workloads than most exist-

ing studies, but it is still by no means exhaustive. There are workloads where more complex

concurrency control algorithms may show definitive advantages, such as in hybrid OLTP-

OLAP workloads. In future work it would be helpful to study more OLTP workloads to

further investigate the effectiveness and applicability of the high-contention optimizations.

7.5.7 Relaxed consistency models

Our work only investigates systems that follow strict serializability, the strictest consis-

tency model for database transactions. In fact, a lot of the complexities in STOv2, especially

those in the implementation of commit-time updates in MSTO, are due to the need to sup-

port strictly serializable transactions. It is shown an overwhelming majority of database

usage in modern applications preserves functional integrity of the applications without ad-

hering to the strictest consistency models [4]. Relaxed consistency models such as eventual

consistency [5] have seen their popularity rise in applications that require high throughput

but can tolerate certain anomalies. It would be interesting to investigate whether incorpo-

rating relaxed consistency would help reduce the complexity and improve performance of

STOv2, or whether STOv2 can achieve consistently high performance without compromis-

85

ing consistency guarantees.

7.5.8 Persistence

Our work addresses only the in-memory transaction processing component of main-

memory databases. In many applications, effects of transactions also need to be persisted

to prevent data loss due to system shutdowns or failures. In future studies it would be useful

to explore options to extend STOv2 to support persistent transactions.

Persistence is considered expensive because writing to durable storage is orders of mag-

nitude slower than in-memory operations. However, there are many known techniques to

mitigate this overhead. Systems like Silo-R [65] tried to achieve this by moving persistence

off the critical path of transaction processing. New technologies also open up new avenues

for fast persistence. For example, emerging nonvolatile RAM technology has the potential

to support durable in-memory operations with minimal modifications to the applications.

With ultra-fast inter- and intra-datacenter networking, high-availability and durability can

also be achieved by replicating transactional operations or the effects of transactions on

remote backup machines. Future work may investigate how to integrate these techniques to

STOv2 and evaluate their trade-offs.

86

Chapter 8

Conclusion

Main-memory databases are central to many modern applications. Scalable applica-

tions require databases to process potentially contended transactional workloads with high

throughput. We investigated three approaches to improving transaction processing through-

put in main-memory database systems under high contention: basis factor improvements,

concurrency control algorithms, and high-contention optimizations. We found that poor ba-

sis factor choices can cause damage up to and including performance collapse: we urge

future researchers to consider basis factors when implementing systems, and especially

when evaluating older systems with questionable choices. Given good choices for basis

factors, we believe that high-contention optimizations – commit-time updates and time-

stamp splitting – are arguably more powerful than concurrency control algorithms. CU+TS

can improve performance by up to 4.8× over base concurrency control for TPC-C, while

the difference between unoptimized concurrency control algorithms is at most 2×.

It is possible that a future workload-agnostic concurrency control algorithm with no

visibility into record semantics might capture the opportunities exposed by CU+TS, but

so far we have not observed any. We believe that the improvement shown by TicToc and

MVCC on high-contention TPC-C is more likely to be the exception than the rule. The

87

best way to improve high-contention main-memory transaction performance is to eliminate

classes of conflicts, as CU+TS explicitly do. Though in our work these mechanisms require

some manual effort to apply, we hope future work will apply them more automatically.

Finally, we are struck by the overall high performance of OCC on both low and high

contention workloads, although MVCC and other concurrency control mechanisms may

have determinative advantages in certain workloads, such as hybrid OLTP/OLAP work-

loads. We show that the implementation details and design choices of phantom protection

and our high contention optimizations can have nontrivial correctness and performance

consequences, especially when in use with more complex concurrency control algorithms.

These factors make it more difficult to predict or understand performance. While we ac-

knowledge the novelty and sophistication of concurrency control algorithms that specifi-

cally address OCC’s known limitations, our results point to the potential for OCC to take

on a more expanded role in modern main-memory database systems geared towards OLTP

workloads.

88

References

[1] N. Abramson. The Aloha system: Another alternative for computer communications.
In Proceedings of the November 17-19, 1970, Fall Joint Computer Conference, AFIPS
’70 (Fall), pages 281–285. ACM, 1970.

[2] R. Agrawal, M. J. Carey, and M. Livny. Concurrency control performance model-
ing: Alternatives and implications. ACM Transactions on Database Systems (TODS),
12(4):609–654, 1987.

[3] B. Badrinath and K. Ramamritham. Semantics-based concurrency control: Beyond
commutativity. ACM Transactions on Database Systems (TODS), 17(1):163–199,
1992.

[4] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Feral
concurrency control: An empirical investigation of modern application integrity. In
Proceedings of the 2015 International Conference on Management of Data, SIGMOD
’15, pages 1327–1342. ACM, 2015.

[5] P. Bailis and A. Ghodsi. Eventual consistency today: Limitations, extensions, and
beyond. ACM Queue, 11(3):20–32, 2013.

[6] P. A. Bernstein and N. Goodman. Multiversion concurrency control—theory and
algorithms. ACM Transactions on Database Systems (TODS), 8(4):465–483, 1983.

[7] C. Borgelt. Frequent item set mining. Wiley interdisciplinary reviews: data mining
and knowledge discovery, 2(6):437–456, 2012.

[8] J. Böttcher, V. Leis, T. Neumann, and A. Kemper. Scalable garbage collection for
in-memory mvcc systems. PVLDB, 13(2):128–141, 2019.

[9] J. Cachopo and A. Rito-Silva. Versioned boxes as the basis for memory transactions.
Science of Computer Programming, 63(2):172–185, 2006.

[10] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The
scalable commutativity rule: Designing scalable software for multicore processors.
In Proceedings of the 24th ACM Symposium on Operating Systems Principles, SOSP
’13, pages 1–17. ACM, 2013.

89

[11] Cockroach Labs. Column families – CockroachDB Docs. Available at https://www.
cockroachlabs.com/docs/stable/column-families.html.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SOCC ’10, pages 143–154. ACM, 2010.

[13] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher, N. Verma,
and M. Zwilling. Hekaton: SQL Server’s memory-optimized OLTP engine. In Pro-
ceedings of the 2013 International Conference on Management of Data, SIGMOD
’13, pages 1243–1254. ACM, 2013.

[14] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proceedings of the
20th International Symposium on Distributed Computing, DISC ’06, pages 194–208.
Springer, 2006.

[15] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. OLTP-bench: An exten-
sible testbed for benchmarking relational databases. PVLDB, 7(4):277–288, 2013.

[16] B. Ding, L. Kot, and J. Gehrke. Improving optimistic concurrency control through
transaction batching and operation reordering. PVLDB, 12(2):169–182, 2018.

[17] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching transactional memory. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’09, pages 155–165. ACM, 2009.

[18] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast remote memory.
In Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation, NSDI ’14, pages 401–414. ACM, 2014.

[19] D. Durner, V. Leis, and T. Neumann. On the impact of memory allocation on high-
performance query processing. In Proceedings of the 15th International Workshop on
Data Management on New Hardware, DaMoN ’19. ACM, 2019.

[20] J. M. Faleiro and D. J. Abadi. Rethinking serializable multiversion concurrency con-
trol. PVLDB, 8(11):1190–1201, 2015.

[21] S. Fernandes and J. Cachopo. A scalable and efficient commit algorithm for the
JVSTM. In Proceedings of the 5th ACM SIGPLAN Workshop on Transactional Com-
puting, Apr. 2010.

[22] D. Gawlick. Processing “hot spots” in high performance systems. In Proc. Spring
COMPCON 85, 30th IEEE Computer Society International Conference, pages 249–
251, 1985.

90

https://www.cockroachlabs.com/docs/stable/column-families.html
https://www.cockroachlabs.com/docs/stable/column-families.html

[23] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional conten-
tion managers. In Proceedings of the 24th annual ACM Symposium on Principles of
Distributed Computing, PODC ’05, pages 258–264. ACM, 2005.

[24] G. Held, M. Stonebraker, and E. Wong. INGRES: a relational data base system. In
Proceedings of the May 19-22, 1975, national computer conference and exposition,
pages 409–416. ACM, 1975.

[25] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos, and P. Boncz. Positional update
handling in column stores. In Proceedings of the 2010 International Conference on
Management of Data, SIGMOD ’10, pages 543–554. ACM, 2010.

[26] M. Herlihy and E. Koskinen. Transactional boosting: A methodology for highly-
concurrent transactional objects. In Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP ’08, pages 207–216.
ACM, 2008.

[27] N. Herman, J. P. Inala, Y. Huang, L. Tsai, E. Kohler, B. Liskov, and L. Shrira. Type-
aware transactions for faster concurrent code. In Proceedings of the 11th European
Conference on Computer Systems, EuroSys ’16. ACM, 2016.

[28] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao, A. Mittal, P. Pandey,
P. Reddy, L. Walsh, et al. BetrFS: A right-optimized write-optimized file system. In
13th USENIX Conference on File and Storage Technologies, FAST ’15, pages 301–
315. ACM, 2015.

[29] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones,
S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-Store: A
high-performance, distributed main memory transaction processing system. PVLDB,
1(2):1496–1499, Aug. 2008.

[30] K. Kim, T. Wang, R. Johnson, and I. Pandis. ERMIA: Fast memory-optimized
database system for heterogeneous workloads. In Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD ’16, pages 1675–1687. ACM,
2016.

[31] H. Kimura. FOEDUS: OLTP engine for a thousand cores and NVRAM. In Proceed-
ings of the 2015 International Conference on Management of Data, SIGMOD ’15,
pages 691–706. ACM, 2015.

[32] H. F. Korth. Locking primitives in a database system. Journal of the ACM (JACM),
30(1):55–79, 1983.

[33] H.-T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM
Transactions on Database Systems (TODS), 6(2):213–226, 1981.

91

[34] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and C. Bear. The
Vertica analytic database: C-Store 7 years later. PVLDB, 5(12):1790–1801, 2012.

[35] V. Leis, A. Kemper, and T. Neumann. Exploiting hardware transactional memory
in main-memory databases. In IEEE 30th International Conference on Data Engi-
neering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 580–591,
2014.

[36] H. Lim. Line comment in experiment script (run exp.py). Available
at https://github.com/efficient/cicada-exp-sigmod2017/blob/

5a4db37750d1dc787f71f22b425ace82a18f6011/run_exp.py#L859, Jun 2017.

[37] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada: Dependably fast multi-core
in-memory transactions. In Proceedings of the 2017 International Conference on
Management of Data, SIGMOD ’17, pages 21–35. ACM, 2017.

[38] K. S. Maabreh and A. Al-Hamami. Increasing database concurrency control based on
attribute level locking. In 2008 International Conference on Electronic Design, pages
1–4. IEEE, 2008.

[39] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore key-value
storage. In Proceedings of the 7th European Conference on Computer Systems, Eu-
roSys ’12, pages 183–196. ACM, 2012.

[40] P. E. McKenney and S. Boyd-Wickizer. RCU usage in the Linux kernel: One decade
later. Technical report, 2012.

[41] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems (TOCS),
9(1):21–65, 1991.

[42] S. Mu, S. Angel, and D. Shasha. Deferred runtime pipelining for contentious mul-
ticore software transactions. In Proceedings of the 14th European Conference on
Computer Systems, EuroSys ’19, pages 40:1–40:16. ACM, 2019.

[43] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase reconciliation for contended in-
memory transactions. In Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’14, pages 511–524. ACM, 2014.

[44] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical partitioning algorithms for
database design. ACM Transactions on Database Systems (TODS), 9(4):680–710,
1984.

[45] P. E. O’Neil. The escrow transactional method. ACM Transactions on Database
Systems (TODS), 11(4):405–430, 1986.

92

https://github.com/efficient/cicada-exp-sigmod2017/blob/5a4db37750d1dc787f71f22b425ace82a18f6011/run_exp.py#L859
https://github.com/efficient/cicada-exp-sigmod2017/blob/5a4db37750d1dc787f71f22b425ace82a18f6011/run_exp.py#L859

[46] OW2 Consortium. RUBiS. Available at https://rubis.ow2.org/.

[47] Rampant Pixels. rpmalloc - rampant pixels memory allocator. Available at https:
//github.com/rampantpixels/rpmalloc, Apr 2019.

[48] D. P. Reed. Naming and synchronization in a decentralized computer system. PhD
thesis, Massachusetts Institute of Technology, 1978.

[49] P. M. Schwarz and A. Z. Spector. Synchronizing shared abstract data types. 1983.

[50] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated data
types. In Symposium on Self-Stabilizing Systems, pages 386–400. Springer, 2011.

[51] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction chopping: Algo-
rithms and performance studies. ACM Transactions on Database Systems (TODS),
20(3):325–363, 1995.

[52] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, et al. C-Store: a column-oriented DBMS. PVLDB,
pages 553–564, 2005.

[53] D. Tang, H. Jiang, and A. J. Elmore. Adaptive concurrency control: Despite the look-
ing glass, one concurrency control does not fit all. In The 8th Biennial Conference on
Innovative Data Systems Research, CIDR ’17, 2017.

[54] Transaction Processing Performance Council. TPC benchmark C. Available at http:
//www.tpc.org/tpcc/.

[55] Transaction Processing Performance Council. TPC benchmark C standard specifica-
tion, revision 5.11. Available at http://www.tpc.org/tpc_documents_current_
versions/pdf/tpc-c_v5.11.0.pdf, Feb 2010.

[56] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions in multi-
core in-memory databases. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 18–32. ACM, 2013.

[57] T. Wang and H. Kimura. Mostly-optimistic concurrency control for highly contended
dynamic workloads on a thousand cores. PVLDB, 10(2):49–60, 2016.

[58] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scaling multicore databases via
constrained parallel execution. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD ’16, pages 1643–1658. ACM, 2016.

[59] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted transactional memory to build
a scalable in-memory database. In Proceedings of the 9th European Conference on
Computer Systems, EuroSys ’14, pages 26:1–26:15. ACM, 2014.

93

https://rubis.ow2.org/
https://github.com/rampantpixels/rpmalloc
https://github.com/rampantpixels/rpmalloc
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

[60] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-memory transaction processing
using RDMA and HTM. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 87–104. ACM, 2015.

[61] W. E. Weihl. Commutativity-based concurrency control for abstract data types. IEEE
Transactions on Computers, 37(12):1488–1505, 1988.

[62] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An empirical evaluation of in-memory
multi-version concurrency control. PVLDB, 10(7):781–792, 2017.

[63] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. Staring into the abyss:
An evaluation of concurrency control with one thousand cores. PVLDB, 8(3):209–
220, 2014.

[64] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. TicToc: Time traveling optimistic
concurrency control. In Proceedings of the 2016 International Conference on Man-
agement of Data, SIGMOD ’16, pages 1629–1642. ACM, 2016.

[65] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases with fast durability and
recovery through multicore parallelism. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI ’14, pages 465–477.
ACM, 2014.

94

	Title Page
	Copyright Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	Introduction
	Databases in Modern Applications
	Database Transactions
	Main-memory Databases
	Concurrency Control
	Improving Main-memory Transaction Processing Performance

	Related Work
	Modern Concurrency Control Research
	Basis Factors
	High-Contention Optimizations
	Transactional Memory

	STOv2 System Description
	The STO Software Transactional Memory Framework
	STOv2 Main-memory Database
	Phantom protection
	OSTO
	MSTO
	TSTO
	Garbage collection
	Deletes in MSTO

	Experiment Setup
	Experiment Setup
	Workloads

	Understanding Baseline Performance
	Basis Factors
	Contention regulation
	Memory allocation
	Abort mechanism
	Index types
	Contention-aware indexes
	Other factors
	Summary

	Baseline Evaluation
	Overview
	Benefits of reordering
	Cross-system comparisons

	High Contention Optimizations
	Overview
	Commit-time updates (CU)
	Timestamp splitting (TS)

	Implementation of CU
	CU implementation in MSTO
	Concurrent flattening in MSTO CU
	Impact on MSTO garbage collection

	Implementation of TS
	Workload integration
	Evaluation
	Combined effects
	Separate effects

	Discussion
	Phantom Protection in TSTO
	Conflicts due to Sequential Insertion
	MSTO Timestamp Splitting Implementation Choices
	MSTO Commit-time Update Implementation Choices
	Future work
	Better locks
	Multi-version indexes
	Better contention-aware indexes
	Garbage collection improvements
	Automated analysis of workload properties
	More workloads
	Relaxed consistency models
	Persistence

	Conclusion
	References

